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ABSTRACT
Modern machine learning techniques, especially in the domain of
images owe much of their success to large quantities of labelled
training data. However, they are not easy to obtain and hence
not scalable. There is a need to automatically label datasets in an
unsupervised manner by making use of only a small labelled set.
GOGGLES[1] does that by proposing a novel way to obtain prob-
abilistic labels for unlabelled image datasets automatically. They
make use of pretrained networks to extract features at multiple
scales and use similarities between images to cluster them. Then
they assign labels using a small labelled set. We challenge vari-
ous aspects of GOGGLES by replacing its core mechanisms with
our approaches. In particular, we replace their hierarchical clus-
tering method with a GAN Mixture Model. We also involve the
development set to obtain the features for clustering by training
an embedding layer. This led to a boost in accuracy by upto 18.6%
from GOGGLES for the CUB dataset. We also added a mechanism
to improve the accuracy with increase in the size of the labeled
set, which was missing in GOGGLES. Our code can be found at
https://github.gatech.edu/ddebashis3/dmm-project-fall2020

1 INTRODUCTION
One of the major limitations in modern machine learning and deep
learning tasks as of late has been the lack of labelled training ex-
amples. It is often the case in specific-domain and organizational
settings, there is ample amount of unlabelled data, and it is often
infeasible for all of this data to be labelled for a given task creat-
ing unique challenges for leveraging machine learning in these
settings. Techniques like few-shot learning, transfer learning, and
semi-supervised techniques have been shown to be effective in
labelling large corpuses of data with only a few examples.

Of the approaches that currently exist in the data management
community, one of the more promising branches is the Data Pro-
gramming paradigm, which seeks to reduce the human effort in
labeling [2] [3]. In Data Programming, domain experts write la-
beling functions, which describe the classes with annotated infor-
mation, such as text or metadata; but does not extend as easily to
domains where semantics are not explicit since expressing domain
knowledge directly using these domains’ raw features is difficult.

1.1 Limitations of Current Approaches
One of the newest techniques in the image domain in Data Pro-
gramming is GOGGLES [1] (the detailed architecture is discussed
† These two authors contributed equally.

in section 2.4), a solution which uses affinity functions with a gen-
erative model for class labeling over images, which exploits weak
supervision as part of the labeling scheme. They pose their frame-
work as a cluster-then-label approach for few-shot learning, where
the general intuition is that a pair of images belonging to the same
class are more similar (according to some similarity function) than
the images belonging to different classes.

The authors pose the design of affinity functions to be domain-
agnostic, using pre-trained convolutional models and extracting
some latent representation from middle layers. This allows them
to design a class of affinity functions that is able to capture image
semantics without the need for a labelled dataset. The quality of the
affinity functions capturing the image semantics is clearly extremely
important to the labelling quality. This raises the concern that the
quality of the labelling is dependent on the quality of the affinity
functions to capture semantics, raising the question of the quality
of the affinity function design. They address this by using affinity
functions with weak classifiers, but it may be possible to capture
more complex semantics in other manners.

Though the technique proposed in GOGGLES has been shown
to be extremely efficient in labelling with very few samples and
the results showed that the proposed method saturates to some
maximum accuracy regardless of the size of the development set
and the number of affinity functions used. While this is good for
proving the power of this technique, it would be beneficial if the
accuracy of the technique increases given more data as is typical in
other data labelling methods.

The use of affinity functions to capture image semantics in the
data programming paradigm is a relatively new idea, and exploring
the design of these functions could be useful in understanding how
this methodology could be sensitive to varying different compo-
nents.

1.2 Proposed Work
From the limitations we see in GOGGLES and other works in unsu-
pervised data labelling, we arrive at the following research ques-
tions:

(1) The quality of the labelling is dependent on the quality of
the affinity functions to capture semantics. Maybe there is a
more robust way to design these functions to capture latent
semantics?

(2) Would including the development set as part of the affinity
function generation improve the quality of the affinity func-
tions, or would it lead to overfitting? Can the addition of
more training data lead to higher labelling accuracy rather
than just converging?
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A useful side effect of many machine learning models is
that increasing the amount of training data consequently
increases the training accuracy of the model. This is not the
case in GOGGLES. This could potentially lead to overfitting
if done incorrectly as the training corpus is small.

(3) Are there models that could outperform the hierarchical
generative model in high dimensional clustering?
Aside from the design of the affinity functions themselves,
one of the critical points of focus in the GOGGLES paper
was the use of GMMs in the base model, and a Multivariate
Bernoulli distribution is fitted using EM in the ensemble step
(hierarchical generative model). Given the nature of high
dimensionality of the space, it has been shown the GAN
mixture models (GANMM) and other types of GAN based
solutions are able to outperform GMMs on clustering of high
dimensional and complex data (more on this in Section 2.3.
This leads to the natural conclusion that a more complex
model may be more suitable to this application.

2 RELATEDWORK
2.1 Few-shot Learning
The area of few-shot learning claims that it is possible to train a
classifier using a very limited amount of data. Themajor approaches
can be categorized into meta-learning and self-supervised learning.

Meta-learning means learning how to learn. The idea here is to
prepare a network to generalize well in a new task with limited data
by training it first on one or more supervised tasks. J. Snell et al.
[4] do this by introducing episodic learning where they mimic the
test scenario by training on a different subset task on each iteration
of meta-training and making use of average activations of images
belonging to the same class as prototypes for vector quantization
of the classification space. S. Qiao et al. [5] take this approach
further by training ameta-network on top of a pre-trained backbone
to generate parameters for the new task from the activations of
the meta-network. Probabilistic class-labels are obtained from a
softmax layer which is added after taking the inner product of the
parameters (which are the activations of the meta-network) and
the activations from the backbone.

Self-supervised learning is an approach based on using a large
corpus of unsupervised data for training the CNN backbone of a
network to enrich the feature representation for downstream tasks.
This direction is well-represented by the work of D. Chen et al. [6]
where they train the backbone by treating each individual image as
one class. They take multiple augmented versions of an image and
comparing it with other images by taking features from multiple
feature-maps from the backbone to minimize the Noise Contrastive
Estimation (NCE) loss.

2.2 Deep Metric Learning
The goal of deep metric learning is to use deep neural networks
to learn an embedding space where the distance between a pair
of samples is commensurate with their semantic visual similarity.
In other words, the aim is to train a similarity metric for images.
This field of research is very relevant to us as the affinity functions
in GOGGLES we will be working on are just another name for
similarity functions.

In the literature, the most common kind of loss function used
for training an embedding layer on a supervised classification task
is called a ‘triplet-loss’ [7] and in its more general form, the ‘N-pair
loss’ [8–11] . The triplet loss works by choosing an image from the
dataset as an anchor, then choosing one positive image (same class
as the anchor) and one negative image (different class from the
anchor). The loss is them computed by maximizing the anchor-to-
negative distance and minimizing the anchor-to-positive distance.
This process is iterated over a set of triplets mined from the dataset.
F. Schroff et al. introduced the triplet loss for tackling the face recog-
nition problem with limited data. To take care of computational
feasibility of the N-pair loss [11], Y. Movshovitz-Attias et al. [9]
designed the ‘Proxy-NCA’ loss and represented each class with a
learnable proxy and used these proxies for positive and negative
samples given an image as an anchor while computing the N-pair
loss. However, replacing images with their proxies prevents the
model to learn direct data-to-data relations as in the case of the
vanilla N-pair loss. To solve this problem, S. Kim et al. [8] design
the ‘Proxy-Anchor’ loss function that uses the proxies as anchors
and uses images directly for positive and negative samples.

We plan to take inspiration from these few-shot learning and
deep metric learning approaches to train an embedding layer on
the development set and use the activations from this embedding
layer to compute new affinity functions for clustering using GOG-
GLES. Since these affinity functions use the labeled development
set, they will be more informative than the other affinity functions
of GOGGLES that are obtained in a completely unsupervised man-
ner. Hence, it will help guide the clustering process to converge to
a better optimum which is aligned with the task at hand.

2.3 GANs
Generative Adversarial Networks (GANs) are class of machine
learning framework rooted in the image domain that have been
previously used in addressing the image construction and they are
able to capture complex data distributions from raw feature spaces.
GANs train a generative network, aimed to generate data indis-
tinguishable from the training data, and a discriminative network,
aimed to separate the training data set from the generated data,
simultaneously. This adversarial process converges such that the
generated data has a distribution close to the training data. Al-
though GANs were not a mechanism originally designed to cluster,
two prominent models architectures have recently been published;
ClusterGAN [12] and GANMM [13].

Research by Zhou and Yu [13] has shown that GANs are compet-
itive mechanisms compared to popular GMMs in high dimensional
clustering. Since GANs make no assumptions about the underlying
distribution in the mixture model, they are able to model complex
data distributions even from raw features. This is a promising find-
ing as they show that through 𝜖-expectation-maximization (𝜖-EM),
they can learn the complex data distribution on a cluster-by-cluster
basis through an EMmethodology, refer to Figure 4 for this architec-
ture. The exact details of this implementation are not included here
as the main focus of this technology is the theoretical applications
in high dimensional clustering. ClusterGAN solves the same prob-
lem but in this approach, the latent space between the networks is
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Figure 1: GANMM cluster architecture [13]

Figure 2: GOGGLES architecture From [1]

sampled using a mixture of discrete and continuous latent variables
in order to create a non-smooth geometry in the latent space.

2.4 GOGGLES
GOGGLES takes a cluster-then-label approach to the data program-
ming paradigm by using labeling functions that are designed to
capture the inherent semantic features in an image. GOGGLES can
be thought of as a workflow, where given some new dataset X.
These steps can be visualized by Figure 2.

(1) For every max pooling layer in VGG-16 extract the proto-
types (semantic concepts) and compute the pairwise similar-
ity for all samples in the unlabelled corpus. This results in a
matrix of the size A ∈ R(𝑛+𝑚)×𝛼 (𝑛+𝑚) .

(2) Given A𝑓 ∈ R𝑁×𝑁 generated by some affinity function,
then the class probability can be learned through GMM.

(3) Concatenate the output from the GMM base models into a
single Label Prediction (LP) matrix, then discretize the con-
catenated matrix and fit a Multivariate Bernoulli distribution
using EM to get final label predictions.

These steps summarize the general workflow of GOGGLES, with
the exact implementation details found in [1].

3 FORMAL PROBLEM DEFINITION
We have an unlabeled set of images 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁 }, and a devel-
opment set𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑀 , 𝑦𝑀 )}, where {𝑥1, 𝑥2, .., 𝑥𝑀 } ⊂

Figure 3: Schematic for the cross-entropy-based training of
embedding layer

𝑆 and 𝑦𝑖 ∈ {0, 1, . . . , 𝐾}. The development set is very small as com-
pared to the set 𝑆 , i.e.,𝑀 ≪ 𝑁 . The goal is to learn parameters 𝜃 of
a classifier 𝐶𝜃 using the unlabeled set 𝑆 and the small labeled set 𝐷
which can assign probabilistic labels 𝑦𝑖 = {𝑦𝑖0, 𝑦𝑖1, ..., 𝑦𝑖𝐾 } to each
of the elements 𝑠𝑖 ∈ 𝑆 , where 𝑦𝑖𝑘 = Pr(𝑦𝑖 = 𝑘), 𝑘 ∈ {0, 1, . . . , 𝐾}. In
our experiments, 𝐾 = 2. The hard labels𝑦𝑖 ∈ {0, 1, . . . , 𝐾} can be ob-
tained by taking the index corresponding to the highest probability,
that is, 𝑦𝑖 = argmin

𝑘

{𝑦𝑖𝑘 }.

These probabilistic labels (or the hard labels) can be used to train
a downstream classifier model. However, this is out of the scope of
this paper. We are only interested in preparing a labeled dataset in
a semi-supervised manner.

4 METHODOLOGY
4.1 Datasets
We make use of the following datasets:

(1) CUB[14]: A total of 11,788 bird images from 200 species.
We use the a similar sampling strategy as GOGGLES [1] for
evaluating binary classification results. However, GOGGLES
was not clear on the exact class-pairs that they used for
binary classification. For the experiments in this paper, we
categorized pairs of classes into three types based on the
labelling accuracy obtained using GOGGLES. The categories
are: CUB Easy (≥ 96% accuracy), CUB Moderate ([88 − 96)%
accuracy), and CUB Hard (< 88% accuracy) as listed in Table
1. We chose 10 pairs for each of those categories. We include
the exact names of the classes for replicability in future work.
This dataset is in-domain, as the images are very similar to
the Imagenet dataset which was used to train the VGG-16
feature-extractor used in this work.

(2) TB-Xray[15]: It contains 662 images of chest X-ray images
which are either ‘normal’ or ‘abnormal’ where ‘abnormal’
shows signs of tuberoculosis. This dataset is out-of-domain
as X-ray images are very different from the natural images
of Imagenet.

3



CUB Easy ( >=96% accuracy on Goggles) CUB Moderate (88-96% accuracy on Goggles) CUB Hard ( <88% accuracy on Goggles)

001.Black_footed_Albatross, 007.Parakeet_Auklet 154.Red_eyed_Vireo, 109.American_Redstart 017.Cardinal, 056.Pine_Grosbeak
095.Baltimore_Oriole, 036.Northern_Flicker 023.Brandt_Cormorant, 026.Bronzed_Cowbird 158.Bay_breasted_Warbler, 037.Acadian_Flycatcher
070.Green_Violetear, 030.Fish_Crow 065.Slaty_backed_Gull, 026.Bronzed_Cowbird 011.Rusty_Blackbird, 195.Carolina_Wren
015.Lazuli_Bunting, 070.Green_Violetear 137.Cliff_Swallow, 026.Bronzed_Cowbird 104.American_Pipit, 126.Nelson_Sharp_tailed_Sparrow
102.Western_Wood_Pewee, 002.Laysan_Albatross 156.White_eyed_Vireo, 161.Blue_winged_Warbler 173.Orange_crowned_Warbler, 031.Black_billed_Cuckoo
034.Gray_crowned_Rosy_Finch, 038.Great_Crested_Flycatcher 156.White_eyed_Vireo, 039.Least_Flycatcher 126.Nelson_Sharp_tailed_Sparrow, 037.Acadian_Flycatcher
036.Northern_Flicker, 074.Florida_Jay 029.American_Crow, 037.Acadian_Flycatcher 178.Swainson_Warbler, 163.Cape_May_Warbler
010.Red_winged_Blackbird, 033.Yellow_billed_Cuckoo 165.Chestnut_sided_Warbler, 130.Tree_Sparrow 163.Cape_May_Warbler, 088.Western_Meadowlark
041.Scissor_tailed_Flycatcher, 026.Bronzed_Cowbird 031.Black_billed_Cuckoo, 098.Scott_Oriole 163.Cape_May_Warbler, 165.Chestnut_sided_Warbler
166.Golden_winged_Warbler, 167.Hooded_Warbler 072.Pomarine_Jaeger, 029.American_Crow 180.Wilson_Warbler, 177.Prothonotary_Warbler

Table 1: Table showing the class breakdowns for CUB Easy, Moderate, and Hard

4.2 New Affinity functions
In this section, we discuss the various ways in which we obtain new
kinds of affinity functions, which we then use to obtain probabilistic
labels using the same hierarchical generative model of GOGGLES.

4.2.1 Using Fully-connected layers. The affinity functions of GOG-
GLES are obtained using the the 2D feature-map layers from the
VGG-16 pretrained network. As we will see in the ablation stud-
ies, the top layers are as much informative, and sometimes more
informative than the bottom layers. Hence, we extract features
from the two fully connected layers (before the classification layer)
to construct affinity functions. We also extract features from the
pre-classifier fully-connected layer from pre-trained Inception-V3
and Resnet-50 networks to construct affinity functions.

4.2.2 Learning Embedding layer using the Development set. It is
desirable that with increase in the size of the labelled training
set, the accuracy should increase, which is not true for GOGGLES.
With that objective, we make use of the development set to train
an embedding layer on top of the VGG-16 pretrained network
and extract features from that layer to design affinity functions.
Since the development set is involved in generating those affinity
functions, it would directly impact the clustering of the unlabelled
set. We use two different approaches to train that embedding layer.

In the first approach (Fig. 3), we freeze the pre-trained VGG-16
backbone up to the first fully-connected (FC) layer. The second
FC layer is initialized using the VGG-16 pretrained network but
not frozen. The classifier layer is initialized by using class proto-
types. Class prototypes are obtained by taking the average of the
activations from the previous pre-trained layer of all the images in
that class in the development set. So, we initialize the parameters
using the activations of the previous layer. The intuition behind
that is, since we have a very small number of training data, a good
initialization is important so as to not overfit on that data. We
then finetune the last two FC layers on the development set using
cross-entropy loss.

For the second approach, we initialize in a similar way but use a
triplet-loss instead of the cross-entropy loss to train the embedding
layer.

4.3 Clustering using GANs
We utilize the clustering technique described in [13] with the
𝜖−expectationmethod described for convergence.We adapt a gener-
ator and discriminator dynamically based on the size of the affinity

matrix. With these modifications, the GANMM code can directly
be used to cluster then label. This approach should be implemented
in such a way that it is invariant to the input dataset and fully
adaptable. We play to test this on the three CUB datasets we have
defined and TB-Xray for robustness.

5 EXPERIMENTS
5.1 Experiments on the CUB dataset
Table 2 shows labeling accuracies for with our new affinity func-
tions, with the same clustering method as GOGGLES.

All_AFs are the original 50 affinity functions from GOGGLES.
first40, last10 are respectively, the accuracies obtained by using
the first 40 affinity functions and last 10 affinity function from the
original GOGGLES set. AF40, AF49, are respectively the 41𝑠𝑡 and
50𝑡ℎ affinity function.

vgg_fc1, vgg_fc1 are the respectively features from the first
and second fully-connected (FC) layer from VGG-16. invc3 is the
pre-classifier FC layer from the pretrained Inception-V3 network.
Similarly, res50 is for the pretrained Resnet-50 network. vgg-ft is
obtained using the embedding layer trained on the development
set using cross-entropy loss.

Table 3, 4, 5 show the results of using the same 50 affinity func-
tions from GOGGLES but using GAN Mixture Models (GANMM)
for clustering.

Table 6 shows the effect of combining the embedding-layer-based
affinity function with GANMM clustering.

5.2 Experiments on the TB-Xray dataset
Table 7 summarizes the experiments performed on the TB-Xray
dataset.AF48 is the most informative affinity function that gave the
highest accuracy among the GOGGLES affinity functions. Triplet
AF is obtained from the embedding layer using the triplet-loss.
vgg-ft is obtained using the embedding layer trained using cross-
entropy loss. GAN uses GOGGLES’ 50 affinity functions and clus-
ters using GAN Mixture Models (GANMM). vgg-ft + GAN uses
the vgg-ft affinity function and clusters using GANMM.
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Easy Moderate Hard

All_AFs 98.3256184 91.851604 67.6568888
first40 89.7786878 85.895022 63.6477611
last10 98.4901605 91.240196 71.4566258
AF40 97.7345582 90.478419 77.1709709
AF49 98.154026 91.240896 70.6225804
vgg_fc1+vgg_fc2 97.8967748 89.160364 78.1663717
vgg_fc1 97.4786957 88.407563 78.5930219
vgg_fc2 95.3757664 90.242297 76.8266765
incv3+res50 93.7746777 87.101795 70.1367492
incv3 88.9889515 86.776038 67.9483014
res50 94.1993077 86.886809 70.3371931
vgg-ft 97.0609006 95.908263 79.5637726

Table 2: Table of experimental results varying the Affinity
Functions over CUB datasets

Label Pair Hierarchical Accuracy GAN Accuracy Rel. Improvement

001, 007 100.0000 100.0000 0.0000
095, 036 100.0000 100.0000 0.0000
070, 030 99.1666 100.0000 0.8404
015, 070 99.1525 99.1525 0.0000
102, 002 98.3333 99.1666 0.8474
034, 038 98.3193 98.3193 0.0000
036, 074 97.5000 98.3333 0.8547
010, 033 97.4789 98.3193 0.8622
041, 026 96.6666 98.3333 1.7242
166, 167 93.2773 96.6386 3.6036

AVERAGE 97.9895 98.8263 0.8732

Table 3: Experimental results over CUB Easy using GANMM
instead of hierarchical generative model

Label Pair Hierarchical Accuracy GANMM Accuracy Rel. Improvement

154, 109 95.0000 95.0000 0.0000
023, 026 94.1176 96.6386 2.6786
065, 026 95.4545 96.3636 0.9524
137, 026 93.3333 96.6666 3.5714
156, 161 93.3333 93.3333 0.0000
156, 039 91.5966 94.1176 2.7523
029, 037 90.7563 89.0756 -1.8519
165, 130 85.0000 85.0000 0.0000
031, 098 91.6666 95.0000 3.6364
072, 029 88.3333 90.8333 2.8302

AVERAGE 91.8592 93.2029 1.4569

Table 4: Experimental results over CUB Moderate using
GANMM instead of hierarchical generative model

Figure 4: Comparing the effects of increasing the develop-
ment set size using vgg-ft affinity functions versus GOG-
GLES affinity functions on TB-Xray

Label Pair Hierarchical Accuracy GANMM Accuracy Rel. Improvement

017, 056 90.5983 91.4530 0.9434
158, 037 77.3109 85.7142 10.8695
011, 195 75.0000 80.0000 6.6667
104, 126 72.2689 81.5126 12.7907
173, 031 94.1667 96.6666 2.6548
126, 037 34.7458 55.0847 58.5366
178, 163 68.1034 72.4137 6.3290
163, 088 57.5000 63.3333 10.1449
163, 165 54.1667 57.5000 6.1539
180, 177 46.6667 55.8333 19.6428

AVERAGE 67.0527 73.9511 13.4732

Table 5: Experimental results over CUBHard usingGANMM
instead of hierarchical generative model

6 DISCUSSIONS & ABLATION STUDY
From Table 2, we can make a number of conlusions. First, a small
number of affinity functions are enough, and sometimes work better
than having a large number of them. Second, The last few affinity
functions (at the top) are more informative than first several affinity
functions. Third, using the development set to train the embedding
layer improves the accuracy by a lot in case of hard pairs of classes.
This might be because the clustering is better guided when we use
the information from the labels of that dataset while clustering.

In Table 3 we observe that GAN and Hierarchical generative
model both perform well on CUB Easy, and GANs only show a
0.8732% relative improvement compared to GOGGLES’ approach.
We observe similar behavior in Table 4 with CUB Moderate. On
CUB Hard, where GOGGLES only labelled with < 88% accuracy,
we observe that using GAN-based clustering 13.4732% relative im-
provement when compared to base GOGGLES. We attribute this
improvement to the GAN capturing subtleties in the latent space
and being able to model complex distributions, thus making more
similar classes more separable. This is a promising for creating more

5



separability in labelings where the images are quite similar and dif-
ficult to distinguish. We found that GANs were slow and often took
a while to converge, making them less practical for fast/automatic
purposes.

In Table 7 we analyze the performance of various configurations
on GOGGLES and the incurred accuracy on the TB-Xray dataset.
The improvements with our methods over GOGGLES (if any) is
marginal in contrast to large improvements for the CUB dataset.
This shows that our methods work better for datasets which are
similar to Imagenet, and is limited when taken to other domains
such as Xray images. AF48 is more accurate than using all affinity
functions. This again shows that we do not need a large number
of affinity functions. We also observe that the bottom layers are
as informative for clustering as the top layers in this dataset. This
makes sense, as the richer features in CUB in the top layers are
useful because of domain similarity with Imagenet, but not for Xray
images. Finally, the accuracy of the embedding layer trained using
the triplet loss does not perform well in our experiments. However,
we believe this can be improved with careful design of the loss
function and better hyper-parameter tuning, which we leave for
future work.

One of the major points we sought out to show with this work
was that as the size of the development size increased, we continued
to see performance gains for the labelling. In Fig. 4, we observe
that GOGGLES performs the same for all samples on TB-Xray, not
increasing in accuracy past 76%. We see that with just the vgg-ft
method, we increase in accuracy as the size of the development set
increases. It is important to note that we used these 𝑛 samples for
both fine-tuning VGG and for the cluster-to-label assignments.

CUB Easy CUB Mod CUB Hard

GOGGLES 97.9895 91.8592 67.0527
vgg-ft 97.0609 95.9082 79.5637
GAN 98.8263 93.2029 73.9511
vgg-ft + GAN 97.9895 95.2039 79.5322

Table 6: Experimental results over CUB showing the effects
of combining affinity functionmodificationswithGAN clus-
tering

Accuracy

GOGGLES 75.8308
AF48 76.5861
Triplet AF 72.9607
vgg-ft 75.6797
AF48 + vgg-ft 76.5861
GOGGLES + vgg-ft 76.5861
GAN 77.0393
vgg-ft + GAN 76.5861

Table 7: Experimental results over TB-Xray using various
techniques

In Table 6 we can see the results of GOGGLES, vgg-ft, GAN, and
the combination of both on the three CUB datasets. We chose to
only analyze vgg-ft from Table 2 as it was the best result. We notice
that the combination does not necessarily improve the accuracy of
its component architectures, suggesting that there may be more
to the underlying assumptions regarding the interactions between
the affinity matrix and the cluster-to-label assignment method.

7 FUTUREWORK
We had initially set out to explore a wide variety of issues with
GOGGLES, but we were only able to accomplish a few of these
objectives within the scope of the class project; which has been
fruitful in and of itself. One of the major things we have not accom-
plished is exploring multi-class labeling. This was definitely one of
the weak points of this research and definitely needs to be fulfilled
in the future. We had also hoped to explore more datasets to ensure
that the techniques we introduced were invariant to input, but this
is left as work to be done outside of this project.

8 CONCLUSION
We set out to look at the weaknesses of GOGGLES and devise
new methods for integrating the development set and using more
complex methods for clustering the affinity matrix. We found that
through utilizing the development set as part of the affinity matrix
generation, we are able to get higher labelling accuracy on average
in the CUB dataset andwhen used in combinationwith other affinity
functions in TB-Xray. This work begs many questions and incites
further questions regarding improvements to GOGGLES. We focus
on two datasets: CUB and TB-Xray, but it would be interesting to
see if the results we observe extend beyond these datasets, and
how GOGGLES performs on data that is not class uniform, or has
embedded noisy data (challenging to label).
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