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Abstract—Every day, billions of pieces of digital media are
created and posted online. Copyright laws exist to protect against
theft, but leakers have the anonymity to continue to cause
damage. How do copyright holders trace the sources of leaks?
An obvious need to uniquely identify each piece of digital media
without perturbing the quality arises. Watermarking fulfills this
need by placing identifying information in a photo or other
media that cannot be seen by the human eye. This is done
by making minuscule changes in the media signal undetectable
by humans and then extracting the mark from publicly-made
media. A watermark may then be traced back to the person
it was originally issued to, allowing the leaker to be identified
and their account terminated (Traitor Tracing). To be effective,
the watermark algorithms need to be robust against attacks that
deter their effectiveness in identification (obfuscation) and need
to be immune to watermark retrieval. The robustness of such
systems will be analyzed in greater detail to see how well these
watermarking methods resist obfuscation and other attacks.

Through cryptanalysis of digital watermarking, we show
that watermark algorithms are typically immune to watermark
retrieval, but not immune to obfuscation and collusion attacks.
However, some algorithms triumph over others in terms of
robustness. Of the two algorithms investigated, Spread Spectrum
was found to not be very robust against obfuscation attacks, albeit
somewhat against collusion attacks. 3-level Discrete Wavelet
Transform was found to be very robust against obfuscation
attacks, but it is weak against ambiguity attacks, especially re-
encryption. The implementation of each algorithm can be found
in the appendix.

Index Terms—Spread Spectrum, Three Layer Discrete Wavelet
Transform, Invisible Watermark, Cryptography, Obfuscation,
Collusion.

I. INTRODUCTION

In the ever-evolving online landscape, there is no greater
form of expression than digital media. Be it audio, video, or
images, billions of new pieces of content are being created
and uploaded daily. As with any other form of property, many
of these are even available for sale through various mediums.
Unfortunately, digitization is not enough to escape the ever
looming problem that plagues any type of product: theft. In
fact, being in a digital format allows an even more significant
threat to emerge, and this threat is redistribution. Even with
proper copyrighting, it may be difficult to pursue legal action
against content thieves. So what can one do to ease this
process? What can be done to deter the content from being
stolen in the first place? And perhaps most importantly, how

can one determine the perpetrator of the leak and revoke their
access to the content?

The answer is digital watermarking. Digital watermarking
is the act of hiding a message signal within the digital
media signal [1]. In the case of a digital media intellectual
property holder, the message that will be hidden is some sort
of identifier that the property holder can use to prove their
ownership of the content. This is not the only use case for
watermarks, though. Visible watermarks can be used either
as a method of deterring theft or as a way of encouraging a
user to purchase a premium version of the content. Invisible
watermarks, on the other hand, can be used to not only prove
content ownership, but even determine the source of a content
leak [1].

These invisible watermarks are the focus our project, and
specifically invisible watermarking on images. We research
multiple algorithms that accomplish this and implement two:
Spread Spectrum [2] and Three-Level Discrete Wavelet Trans-
form [3]. We are interested in analyzing these algorithms to
determine their effectiveness at embedding the watermark with
minimal visual impact, as well as their robustness against
various attacks. As one might expect, watermarks do not
provide perfect security, and so we also implement and analyze
methods of attacking the watermarks we implement.

II. BACKGROUND

Digital watermarking is a well defined area of research
and as such, we began this project by performing a literature
review. The goal of this literature review is to understand
the algorithms, applications, and attacks that are currently
understood by academia and used in industry.

A. Algorithms

This section will talk about the two primary algorithms of
focus in this paper, but will also mention other algorithms that
were considered but not ultimately implemented

1) Spread-Spectrum Image Watermarking [2]: Spread
spectrum technology has been applied in multimedia digital
watermarking in the work of Cox [4]. The watermark is hidden
in the frequency domain coefficients of the host, so each
coefficient hides a small amount of watermark information
that can not be detected at random. . [5]



Fig. 1. Visualization of the spread spectrum process for visual embedding.
Sourced from [6]

The following outlines the basic embedding and detection
components of the spread spectrum watermarking algorithm
on images first introduced by Cox.

Let I represent the original host image in YCrCb, and I ′ be
the watermarked image also in YCrCb. Let M be the width of
the host image and N be the height. Let k be M ∗N , that is,
the count of pixels in the image. Let W = w1, w2, ..., wk be
an k-element sequence sampled from N (0, σx/

√
N). Let J be

the watermark image to be embedded of size MxN . Let Γ be
the gain defined on the watermark. Initally, let I ′ = I . Then
the embedding process follows equation 1. This embedding
process is also visualized at figure 1.

I ′[:, :, 0] = I[:, :, 0] + Γ ∗ ·W · J (1)

L = Jν(nu,Z) ∗ pi ∗ 0.5 ∗ Jν(1,
0.5 ∗ π ∗

√
m2 + n2)

2 ∗ π ∗
√
m2 + n2

) (2)

Given I and I ′, the watermark J can be easily extracted
through an inverse process visualized in figure 3. Prior to
simple extraction, a high-pass filter must be applied. Let w be
a 21-hamming window. Let m,n both be meshgrids from -10
to 10. Let Jν(nu,Z) be the Bessel function of the first kind for
each element in array Z. The low-pass filter is defined as L in
equation. The high-pass filter to be applied is computed from
L as initially H = −L. The value H[11, 11] = 1 − π∗0.52

(4∗π) .
Finally, the high pass filter is multiplied by w · w′. This
high pass filter is convolved with I ′. Next, the noise is
demodulated and applied a sign function to determine the
embedded watermark J .

2) 3-Level Discrete Wavelet Transform [3]: DWT splits the
image frequency into two parts: high and low frequency. The
low frequency part is then split into high and low frequency.

For each level of the DWT (3), the algorithm is performed
vertical first, horiziontal second. The first level yields 4
subbands: LL1, LH1, HL1, and HH2. The following levels
take the previous level’s LL subband as input. As a result,
the second level decomposes LL1 into four more subbands:
LL2, LH2, HL2, and HH2. The same occurs in the third level,
where LL2 is decomposed into an additional four subbands:
LL3, LH3, HL3, and HH3. The result of these three levels of

Fig. 2. Visualization of the computed high pass filter H

Fig. 3. Visualization of the spread spectrum process for visual extraction.
Sourced from [6]

decomposition results in 10 subbands in total per component;
the highest-frequency bands being LH1, HL1, and HH1 and
the lowest-frequency band being LL3.

To perform the Watermark Embedding, the base image and
watermark image are decomposed using 3-Level DWT into
high and low frequency bands. The low frequency component
of each (LL2 and WM2) are blended together with k and q
scaling factors into an α Blending Embedding Technique as
follows:

WMI = k ∗ (LL2) + q ∗ (WM2)

For Watermark Extraction, a 3-level DWT is applied to
the watermarked image, decomposing it into its subbands.
The watermark is then extracted using the α blending of
the low-frequency approximation of the original image and
watermarked image. The following formula is used to recover
the watermark:

RW = (WMI − k ∗ LL3)

This yields the low-frequency approximation of the water-
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Fig. 4. Visualization of the discrete wavelet transform embedding process.
Sourced from [7]

Fig. 5. Visualization of the discrete wavelet transform watermark extraction
process. Sourced from [7]

mark. This equation requires knowledge of scaling factor k
and the lowest-frequency portion of the original image.

3) Others: Obviously there many other algorithms to ac-
complish watermarking, but the aforementioned algorithms
will be focused on in detail in this paper. Below are some
others that were found to be used in either academia or
industry, but not pursued here.
• Adaptive SVD-Based Digital Image Watermarking [8]
• Steganalysis Based on Difference Image [9]
• High Capacity Steganographic Algorithm in Color Im-

ages [10]

B. Classes of Attacks

In section 3.2 of [11], Hartung et. el define four generalized
classes of attacks on digital watermarking. Class A attacks,
or ’simple attacks’ are conceptually simple attacks that ”at-
tempt to impair the embedded watermark by manipulations of
the whole watermarked data”, without attempting to identify
or isolate the watermark. These attacks are usually quite
straightforward and typically involve either linear or nonlinear
filtering, addition of noise, or adding γ correction.

The second class of attacks, class B attacks, are known as
detection-disabling attacks. These attacks attempt to break the
correlation and to make the recovery of the watermark impos-
sible or infeasible for a watermark detector, mainly through
techniques like zooming, shifting, or other permutations of the
image. Typically, significant modifications need to be done to
the images in order for these attacks to be successful.

Class C attacks are known as ambiguity attacks, or attacks
that attempt to confuse by producing fake original data or fake
watermarked data. These ambiguity attacks attempt to mask
the authentic watermark by embedding garbage data into the
watermark layers of various algorithms.

Finally, class D attacks are known as removal attacks. These
attacks attempt to analyze the watermarked data and estimate
the watermark or host data in an attempt to separate the host
data and the watermark, discarding the watermark. A classical
example of these are collusion attacks [12].

These distinctions will be useful in quickly classifying the
objective of the attacks, which will be discussed next.

C. Attacks

1) Attacks on Spread Spectrum: There are several attacks
on the SS that have been named by F. Hartung et. al. [11]
including addition of noise. In this method, a class A attack,
a randomized noise matrix is generated and applied to the
watermarked image. This hopes to perturb the existing water-
mark such that it cannot be feasibly extracted for identification,
with no attempts to remove the existing watermark. Collusion
attacks are a class D attack detailed by M. Tanha et. al. [13].
This involves the attacker obtaining a sample of the same
images where averaging techniques are used to determine
the values of the original image. This can then be used
to remove watermarks entirely rather than obfuscating the
existing watermarks. In the event the attackers are aware of
the encrypting algorithm. This allows for masking (class B)
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attacks where the watermark is targeted to alter the existing
watermark such that the detector is unable to identify the
original. An unauthorized embedding attack can take place as
well, where the attacker places a false watermark on the image.
This can achieve several purposes, including the reduction of
credibility from an existing work, or placing new information
that confuses the detector sufficiently that the original may not
be extracted.

2) Attacks on 3-Level Discrete Wavelet Transform: Several
attacks exist over the DWT watermarking algorithm as are
detailed by A. Samovic and J. Turan [7]. One such attack is a
lossy compression attack where the image quality is lowered,
which may perturb the watermark. This can be resisted by
placing the watermark in the domain where quality is altered.
Another method is where a random signal generation (Poisson,
Gaussion, Uniform) process creates a mask the same size of
the image with the maximum unnoticed strength to perturb
detection of the original image. This can also happen uninten-
tionally during Digital to Analog conversions and vice versa.
Filtering attacks such as high-pass, low-pass, and Gaussian
can be applied to disrupt the high frequency content found
in Discrete Wavelet attacks. Collusion attacks can also be
leveraged to remove the watermark from the image if enough
samples are present. This evaluates the average state of pixels
to remove the effect of watermarks found. This attack often
requires a large sample size to be effective.

3) Generic Attacks: A common technique in any
encryption-decryption architecture is the process of re-
encrypting the ciphertext with meaningless data in hopes
to obfuscate the original message. This technique is also
applicable to digital watermarking. One such attacks is known
as the N Re-Encrypts (NReE) attack. This attack involves re-
encrypting the cipher image many times in hopes to obfuscate
the original watermark. This technique is effective when high
image gain is used when compared to the original gain used
to embed the watermark originally. It is often common for an
attacker to not be aware of the algorithm used in the original
encryption, as such, we must also consider generalized attacks
of NReE.

III. APPROACH

a) Survey of Existing Technology: In order to evaluate the
algorithms, a sample set of images with varying watermarks
will be necessary. An initial survey of existing technologies
was done to determine what methods would be used for
generating the sample. Very few tools were discovered, none
of which suited the experiment well. A suite of watermarking
tools were then created to generate sample data for attack,
and to extract watermarks from the sample. Next, tools were
developed to leverage some attacks against each algorithm.

b) Sample Data: For fair evaluation of performance, one
image was used for sample generation. Peppers was selected
for data generation (see figure 6) using the Bitmap format.

c) Analyzing Performance: For the purpose of perfor-
mance analysis, the two primary metrics will be based on
pixel difference from either the original image or watermarked

Fig. 6. Reference photo used for testing

image, and viewing of the generated and extracted watermark.
The difference in pixel values will allow for measuring quality
degradation and obfuscation of the watermark. The viewing
of the watermarks will allow for evaluation of correlation
between the two watermark values.

IV. RESULTS

A. Spread Spectrum (SS)

Obfuscation by N Re-Encrypts (NReE) will successfully
obfuscate the watermark after 3 rounds, however this method
affects the quality more as opposed to collusion. In figure 8 the
quality loss is displayed in conjunction to its difference from
the original watermarked image. Close to 50 re-encrypts, the
damage to the original is evident, with a pattern resembling the
original visible in the delta of the two images. After 100 re-
encrypts, severe damage has taken place to the resulting image
with a likeness of the image in the delta from the original.
Overall, this method of defeating the original image is fairly
strong, as successful obfuscation can take place before the
image is damaged. Comparing the original watermark (figure
7) to the extracted watermarks (figure 8) we can see that the
watermark is successfully obfuscated after three rounds. As
such running the NReE algorithm for more than three rounds
is not necessary.

Another attack was the collusion attack over the SS algo-
rithm. The results of this attack is show in figure 9. This
requires multiple copies of the same image watermarked with
the same noise to be successful, but can get an extremely
close approximation of the original image. Using an averaging
technique in the middle image, we see a very close result
to the original image when iterating over a sample size of
100. The image on the right utilizes a fast Fourier transform
(FFT) to approximate an original image. This method over the
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Fig. 7. SS Original watermark

Fig. 8. Damage to image by NReE

same sample achieves a similar approximation to the averaging
method.

B. Discrete Wavelet Transform (DWT)

As it performed very well over the spread spectrum algo-
rithm, the NReE was implemented for the DWT algorithm as
well. The results of NReE obfuscation is show in figure 11
This method has a few interesting differences when compared
to the SS method on NReE. One difference is that even with
a large value of N, no damage is perceptible to the altered
image. The largest deviation from the original image is by
a value of 4 in a single pixel, even over 100 rounds. This
would allow for many iterations to increase destruction of the
watermark. In addition, the damage to the image follows a
pattern that is blocky, similar to the watermarks as opposed
to the noisy pattern that resembles the attacked image. This
also successfully obfuscates the original watermark after only

Fig. 9. Difference from original by collusion

a single round as opposed to the three rounds necessary in the
SS methods.

Fig. 10. Original watermark for DWT sample

Fig. 11. Damage to image by NReE

The Gaussian Noise Attack is one method that was applied
to the DWT algorithm. The results of this attack are show
in figure 12. In this method, a gaussian noise was generated
that was then added to the watermarked image. Each noise
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Fig. 12. Gaussian attack on DWT

layer was tested with a mean of 0 and varying levels of
standard deviation. With a standard deviation of 1 and 10,
there is little damage to the image, though the watermarks
are likely still usable. When a standard deviation of 50 was
used, the watermark was destroyed, though the image was very
obviously damaged by the operation.

Fig. 13. Compression attack on DWT

One method of attack on the watermarked image is to
compress the image to a lower quality. The results of the
attack are show in figure 13 This attack was attempted at
conversions of 100% quality, 50%, 75%, 25%, and 0%. At
levels 100% and 50%, the original watermark is still likely
extractable and usable. At a 25% quality level, the watermark
is heavily damaged but may be identified using advanced
methods, though some damage to the image is obvious. When
the image is compressed using a quality level of 0%, the
watermark is no longer identifiable, but the image quality has
suffered greatly.

C. Attack on Unknown Algorithms

In most instances, a watermark will not be detectable
by others than the original publisher. An attack will likely
not allow for knowledge of the encrypting algorithm. Tests

were run by attempting obfuscation by cross algorithms to
determine the resistance the algorithms to obfuscation by N
Re-encryptions. The first approach was to study the effects
of NReE on an SS watermarked image using DWT algorithm.
The results of this are shown in figure 14. This was done using
25 passes of NReE using the DWT algorithm. The resultant
watermark extracted shows some change versus the original
version, though several similarities are retained. There is a
strong chance that the watermark could be associated with the
original however.

Fig. 14. DWT NReE attack on SS mark

Another attempt was done by applying NReE with the SS
algorithm to an image watermarked by the DWT algorithm.
The figure for this is listed below. The attack was run with 10
rounds using randomized watermarks and noise over a DWT
marked image. By using 10 rounds, the original watermark
was almost completely removed from the image. The issue
remains that we do not entirely know if the watermark is
destroyed, especially if the marking algorithm is unknown.
As such, this attack will require a balance between alterations
to the image and the quality damage that results from the SS
algorithm.

Fig. 15. SS NReE attack on DWT mark

V. CONCLUSIONS

Based on the results of the test, the algorithms are all
trapdoor functions where retrieval and removal of a watermark
on an image is very difficult without the key. Neither algorithm
is generally immune to obfuscation or collusion. Cross encryp-
tion is not always effective, especially when using an algorithm
with low impact to obfuscate one with high impact. Low
impact algorithms are more prone to re-encryption from high
impact algorithms however. Collusion can remove a watermark
with no visible damage, however the overhead for the sample
requirements will

A. Discrete Wavelet Transform

Based on the attacks perform, this algorithm is fairly
robust, and circumvents the damage to the image inherent
in some of the algorithms. DWT is fairly strong against
most obfuscation attacks, except for the NReE attacks based
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on the SS or DWT algorithm, often being obfuscated after
one round. Other methods show that the algorithm is rather
robust, where damaging gaussian noise still fails to sufficiently
obfuscate the original watermark. This was not too unexpected
as images are inherently noisy and will need to be handled
well. Compression was an interesting idea that was tested due
to the ease use, however the DWT algorithm proved resistant
to such attacks. In order to sufficiently destroy the watermark,
the image was severely damaged. At levels where damage to
the image was not severe, the watermark was either intact or
capable of being recovered by using some advanced methods.

B. Spread Spectrum

As determined by the attacks performed, this algorithm is
not very robust against obfuscation, though this is somewhat
robust against collusion attacks. After 3 attacks, the watermark
was consistently damaged enough to be destroyed and not
usable. This can be done without any major damage to the
image being attacked. More lightweight attacks are ineffective
however as shown by the NReE by DWT attack, where 25
passes damaged a watermark, but it still may be associated
with the original by advanced techniques. This is fairly robust
to many attacks, requiring a balance between obfuscation and
image quality.
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APPENDIX

I. Spread Spectrum Implementation

1 from PIL import Image
2 import numpy as np
3 import cv2
4 import matplotlib.pyplot as plt
5 import os
6 import pickle
7 import math
8 from scipy import special, misc, ndimage, io
9 %matplotlib inline

10

11 def rgb2ycbcr(im):
12 xform = np.array([[.299, .587, .114],

[-.1687, -.3313, .5], [.5, -.4187,
-.0813]])

13 ycbcr = im.dot(xform.T)
14 ycbcr[:,:,[1,2]] += 128
15 return np.uint8(ycbcr)
16

17 def ycbcr2rgb(im):
18 xform = np.array([[1, 0, 1.402], [1,

-0.34414, -.71414], [1, 1.772, 0]])
19 rgb = im.astype(np.float)
20 rgb[:,:,[1,2]] -= 128
21 rgb = rgb.dot(xform.T)
22 np.putmask(rgb, rgb > 255, 255)
23 np.putmask(rgb, rgb < 0, 0)
24 return np.uint8(rgb)
25

26 def watermark(im, Noise, K=64, gain=1):
27 A = rgb2ycbcr(np.array(im))
28 B = A[:,:,0]
29 M,N = B.shape
30 Mb = M//K
31 Nb = N//K
32

33 plusminus1 = np.sign(np.random.randn(1,Mb*Nb
))

34 # plt.imshow(plusminus1.reshape(8,8))
35 Watermark = np.zeros(B.shape)
36 for i in range(Mb):
37 for j in range(Nb):
38 Watermark[i*K:(i+1)*(K-1),j*K:(j+1)

*(K-1)] = plusminus1[0][i*Mb+j]
39 # plt.imshow(Watermark)
40 # Noise = np.round(np.random.randn(B.shape

[0],B.shape[1]))
41 WatermarkNoise = gain * Noise * Watermark
42 # plt.imshow(WatermarkNoise)
43

44 B = B + WatermarkNoise
45 C = np.zeros((M,N,3))
46 C[:,:,0] = B
47 C[:,:,1] = A[:,:,1]
48 C[:,:,2] = A[:,:,2]
49 C = ycbcr2rgb(C)
50 A = ycbcr2rgb(A)
51

52 return (Image.fromarray(C), Watermark)
53

54 def obfuscate(n, im, K=64, gain=1):
55 for i in range(n):
56 noise = np.round(np.random.randn(im.size

[0],im.size[0]))
57 img, img_arr = watermark(im, noise)
58 im = img
59

60 return im
61

62 def decode(B, Noise, K=64):
63

64 M,N = B.shape
65 Mb = M//K
66 Nb = N//K
67
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68

69 h = io.loadmat(’h.mat’)[’h’]
70

71 Bconv = ndimage.convolve(B, h)
72

73 Noise_Demod = Bconv * Noise
74 Sign_Detection = np.zeros(B.shape)
75

76 for i in range(Nb):
77 for j in range(Mb):
78 Sign_Detection[i*K:(i+1)*(K-1),j*K:(

j+1)*(K-1)] = np.sign(sum(sum(Noise_Demod[i
*K:(i+1)*(K-1),j*K:(j+1)*(K-1)])))

79

80 return -1 * Sign_Detection
81

82 im = Image.open("pepper.bmp")
83 noise = np.round(np.random.randn(im.size[0],im.

size[0]))
84 watermarked_img, watermark_arr = watermark(im,

noise)
85 print(type(watermark_arr))
86 plt.imshow(watermark_arr)
87

88 # get watermarked image
89 plt.imshow(watermarked_img)
90

91 print(type(watermarked_img))
92 broken = obfuscate(10, watermarked_img)
93

94 plt.imshow(np.array(watermarked_img) - np.array(
broken))

95

96 # Testing obfustication
97 decoded_im1 = decode(rgb2ycbcr(np.array(broken))

[:,:,0], noise)
98 plt.imshow(decoded_im)
99

100 decoded_im2 = decode(rgb2ycbcr(np.array(
watermarked_img))[:,:,0], noise)

101 plt.imshow(decoded_im)
102

103 np.sum(decoded_im1 == decoded_im2) / (np.sum(
decoded_im1 != decoded_im2) + np.sum(
decoded_im1 == decoded_im2))

104

105 pickle.dump(noise, open(directory + ’noise.p’, ’
wb’))

II. 3-DWT Implementation
1 from PIL import Image
2 import numpy as np
3 import cv2
4 import matplotlib.pyplot as plt
5 import os
6 import pywt
7 import pickle
8 import scipy as sp
9 from scipy import special, misc, ndimage, io,

fftpack
10 import math
11 import pylab
12 %matplotlib inline
13

14 ORIGIN_RATE = 1 # q
15 WATERMARK_RATE = 0.009 #k
16

17 def dwt2_single(img):
18 coeffs_1 = pywt.dwt2(img, ’haar’, mode=’

reflect’)
19 coeffs_2 = pywt.dwt2(coeffs_1[0], ’haar’,

mode=’reflect’)
20 coeffs_3 = pywt.dwt2(coeffs_2[0], ’haar’,

mode=’reflect’)

21 return coeffs_1, coeffs_2, coeffs_3
22

23 def dwt2(img1, img2):
24 coeffs1_1, coeffs1_2, coeffs1_3 =

dwt2_single(img1)
25 coeffs2_1, coeffs2_2, coeffs2_3 =

dwt2_single(img2)
26 return coeffs1_1, coeffs1_2, coeffs1_3,

coeffs2_3
27

28 def idwt2(img, coeffs1_1_h, coeffs1_2_h,
coeffs1_3_h):

29 cf3 = (img, coeffs1_3_h)
30 img = pywt.idwt2(cf3, ’haar’, mode=’reflect’

)
31

32 cf2 = (img, coeffs1_2_h)
33 img = pywt.idwt2(cf2, ’haar’, mode=’reflect’

)
34

35 cf1 = (img, coeffs1_1_h)
36 img = pywt.idwt2(cf1, ’haar’, mode=’reflect’

)
37 return img
38

39 def embed_single_channel(orig_chan,
watermark_chan):

40 coeffs1_1, coeffs1_2, coeffs1_3, coeffs2_3 =
dwt2(orig_chan, watermark_chan)

41 embed_img = cv2.add(cv2.multiply(ORIGIN_RATE
, coeffs1_3[0]), cv2.multiply(
WATERMARK_RATE, coeffs2_3[0]))

42 embed_img = idwt2(embed_img, coeffs1_1[1],
coeffs1_2[1], coeffs1_3[1])

43 np.clip(embed_img, 0, 255, out=embed_img)
44 embed_img = embed_img.astype(’uint8’)
45 return embed_img
46

47 def embed_segment(watermark, orig):
48 orig_size = orig.shape[:2]
49 watermark = cv2.resize(watermark, (orig_size

[1], orig_size[0]))
50 orig_r, orig_g, orig_b = cv2.split(orig)
51 watermark_r, watermark_g, watermark_b = cv2.

split(watermark)
52

53 embed_img_r = embed_single_channel(orig_r,
watermark_r)

54 embed_img_g = embed_single_channel(orig_g,
watermark_g)

55 embed_img_b = embed_single_channel(orig_b,
watermark_b)

56

57 embed_img = cv2.merge([embed_img_r,
embed_img_g, embed_img_b])

58 return embed_img
59

60 def get_img_seg(image, num):
61 segments = []
62 if num <= 1:
63 segments.append(image)
64 return segments
65 ratio = 1.0/float(num)
66 height = image.shape[0]
67 width = image.shape[1]
68 pHeight = int(ratio*height)
69 pHeightInterval = (height-pHeight)/(num-1)
70 pWidth = int(ratio*width)
71 pWidthInterval = (width-pWidth)/(num-1)
72

73 for i in range(num):
74 for j in range(num):
75 x = pWidthInterval * i
76 y = pHeightInterval * j
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77 segments.append(image[y:y+pHeight, x
:x+pWidth, :])

78 return segments
79

80

81 def merge_img_segments(segments, num, shape):
82 if num <= 1:
83 return segments[0]
84

85 ratio = 1.0/float(num)
86 height =shape[0]
87 width = shape[1]
88 channel = shape[2]
89 image = np.empty([height, width, channel],

dtype=int)
90 pHeight = int(ratio*height)
91 pHeightInterval = (height-pHeight)/(num-1)
92 pWidth = int(ratio*width)
93 pWidthInterval = (width-pWidth)/(num-1)
94 cnt = 0
95

96 for i in range(num):
97 for j in range(num):
98 x = pWidthInterval * i
99 y = pHeightInterval * j

100 image[y:y+pHeight, x:x+pWidth, :] =
segments[cnt]

101 cnt += 1
102 return image
103

104

105 def channel_extracting(orig_chan, embed_img_chan
):

106 coeffs1_1, coeffs1_2, coeffs1_3, coeffs2_3 =
dwt2(orig_chan, embed_img_chan)

107 extracting_img = cv2.divide(cv2.subtract(
coeffs2_3[0], cv2.multiply(ORIGIN_RATE,
coeffs1_3[0])), WATERMARK_RATE)

108 extracting_img = idwt2(extracting_img, (None
, None, None), (None, None, None), (None,
None, None))

109 return extracting_img
110

111 def extract_orig_segments(orig, embed_img, num):
112 orig_r, orig_g, orig_b = cv2.split(orig)
113 embed_img_r, embed_img_g, embed_img_b = cv2.

split(embed_img)
114 extracted_img_r = channel_extracting(orig_r,

embed_img_r)
115 extracted_img_g = channel_extracting(orig_g,

embed_img_g)
116 extracted_img_b = channel_extracting(orig_b,

embed_img_b)
117 extracting_img = cv2.merge([extracted_img_r,

extracted_img_g, extracted_img_b])
118 return extracting_img
119

120 def generate_watermark(shape=(512,512), K=64):
121 M,N = shape
122 Mb = M//K
123 Nb = N//K
124

125 plusminus1 = np.sign(np.random.randn(1,Mb*Nb
))

126 Watermark = np.zeros(shape)
127 for i in range(Mb):
128 for j in range(Nb):
129 Watermark[i*K:(i+1)*(K-1),j*K:(j+1)

*(K-1)] = plusminus1[0][i*Mb+j]
130 Watermark_rgb = np.zeros((shape[0], shape

[1], 3), dtype=np.uint8)
131 for i in range(M):
132 for j in range(N):
133 if Watermark[i,j] == 1:

134 Watermark_rgb[i,j] = np.array
([0,0,0], dtype=np.uint8)

135 else:
136 Watermark_rgb[i,j] = np.array

([255,255,255], dtype=np.uint8)
137

138 return Watermark_rgb
139

140 def obfuscate(orig, image_segments_num, n):
141 watermarks = []
142 for i in range(n):
143 # Generate (or load in) watermark, must

be the same shape as the original
144 watermark = generate_watermark(shape=

orig.shape[:2])
145 watermarks.append(watermark)
146 # parameters
147 image_segments_num = 1 # 1,2, or 4
148

149 # encoding
150 orig_segments = get_img_seg(orig,

image_segments_num)
151 embedding_img_segments = []
152 for segment in orig_segments:
153 embed_segment(watermark, segment)
154 embedding_img_segments.append(

embed_segment(watermark, segment))
155 embed_img = merge_img_segments(

embedding_img_segments, image_segments_num,
orig.shape)

156 return embed_img, watermarks
157

158 # load in original image to be watermarked
159 orig = np.array(Image.open("pepper.bmp"))
160 plt.imshow(orig)
161

162 # Generate (or load in) watermark, must be the
same shape as the original

163 watermark = generate_watermark(shape=orig.shape
[:2])

164 plt.imshow(watermark)
165

166 # parameters
167 image_segments_num = 1 # 1,2, or 4
168

169 # encoding
170 orig_segments = get_img_seg(orig,

image_segments_num)
171 embedding_img_segments = []
172 for segment in orig_segments:
173 embed_segment(watermark, segment)
174 embedding_img_segments.append(embed_segment(

watermark, segment))
175 embed_img = merge_img_segments(

embedding_img_segments, image_segments_num,
orig.shape)

176 plt.imshow(embed_img)
177

178 #obfuscate
179 broken, watermarks = obfuscate(embed_img,

image_segments_num, 100)
180 plt.imshow(broken)
181

182 img1 = np.array(orig, dtype=np.int8)
183 img2 = np.array(broken, dtype=np.int8)
184 # Calculate the absolute difference on each

channel separately
185 error_r = np.fabs(np.subtract(img2[:,:,0], img1

[:,:,0]))
186 error_g = np.fabs(np.subtract(img2[:,:,1], img1

[:,:,1]))
187 error_b = np.fabs(np.subtract(img2[:,:,2], img1

[:,:,2]))
188 # Calculate the maximum error for each pixel

9



189 lum_img = np.array(np.maximum(np.maximum(error_r
, error_g), error_b), dtype=np.uint8)

190 imgplot = plt.imshow(lum_img)
191 imgplot.set_cmap(’jet’)
192 plt.colorbar()
193 plt.axis(’off’)
194 pylab.show()
195

196 # decoding obfuscate
197 embed_img_resize = cv2.resize(broken, (orig.

shape[:2][1], orig.shape[:2][0]))
198

199 orig_segments = get_img_seg(orig,
image_segments_num)

200 embedding_img_segments = get_img_seg(
embed_img_resize, image_segments_num)

201 extracted_img_segments = []
202

203 for i in range (0, image_segments_num*
image_segments_num):

204 extracted_img_segments.append(
extract_orig_segments(orig_segments[i],
embedding_img_segments[i], i))

205

206 extracted_watermark = np.array(
merge_img_segments(extracted_img_segments,
image_segments_num, orig.shape))

207

208 # clean up extraction
209 extracted_watermark[extracted_watermark >= 1] =

1
210 extracted_watermark[extracted_watermark <= 0] =

0
211 extracted_watermark = np.array(

extracted_watermark, dtype=np.float)
212 plt.imshow(extracted_watermark)
213 broken_watermark = extracted_watermark
214

215 # decoding
216 embed_img_resize = cv2.resize(embed_img, (orig.

shape[:2][1], orig.shape[:2][0]))
217

218 orig_segments = get_img_seg(orig,
image_segments_num)

219 embedding_img_segments = get_img_seg(
embed_img_resize, image_segments_num)

220 extracted_img_segments = []
221

222 for i in range (0, image_segments_num*
image_segments_num):

223 extracted_img_segments.append(
extract_orig_segments(orig_segments[i],
embedding_img_segments[i], i))

224

225 extracted_watermark = np.array(
merge_img_segments(extracted_img_segments,
image_segments_num, orig.shape))

226

227 # clean up extraction
228 extracted_watermark[extracted_watermark >= 1] =

1
229 extracted_watermark[extracted_watermark <= 0] =

0
230 extracted_watermark = np.array(

extracted_watermark, dtype=np.float)
231 plt.imshow(extracted_watermark)
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