
Exploring the Capabilities and Possible
Applications of Neural Turing Machines

Ryan Cooper
Computer Science and Engineering

New Mexico Institute of Mining and Technology
Socorro, New Mexico

Email: ryan.cooper@student.nmt.edu

Brandon Fleming
Computer Science and Engineering

New Mexico Institute of Mining and Technology
Socorro, New Mexico

Email: brandon.fleming@student.nmt.edu

Abstract—The neural turing machines (NTM) is a class of
learner that was introduced in 2014 by Google DeepMind. The
NTM adds a “working memory” to the computational unit in a
traditional artificial neuron, essentially causing the neuron to not
only act on the input provided to the neuron, but also acting as
a controller to its own working memory set. The NTM has been
shown to not only solve turing-problems, but is hypothesized to be
a super-turing approximation model [1]. The NTM has spawned
significant research in memory-augmented computing and allows
classical deep-learning to be applied to algorithmic processes. We
explore open-source implementations of NTMs and analyze the
extent of these capabilities, comparing these to the shortcomings
of classical memory models like recurrent LSTM and GRU.

Index Terms—Machine Learning, Neural Turing Machine,
Python, Recurrent Neural Networks

I. INTRODUCTION

A. Classical Machine Learning Limitations

Neumann defines computation programs that are con-
structed based on three fundamental mechanisms [1]:

1) Initial operations (e.g. arithmetic)
2) Logical flow control
3) External memory

With respect to the success made in complicated data mod-
eling, machine learning usually applies logical flow control
by ignoring the external memory. Here, RNNs networks
outperform other learning machine methods with a learning
capability. Moreover, it is obvious that RNNs, are Turing-
Complete[3] and provided that they are formatted in a correct
manner, they would be able to simulate different methods.
Any advance in RNNs capabilities can provide solutions for
algorithmic tasks by applying a big memory. RNNs utilize
bidirectional associative memory [2] in order to maintain
temporal (or spatial) relationships between input, and as such,
lend themselves for comparison to an explicit memory model.

B. Introduction to Neural Turing Machines

Neural Turing Machines (NTMs) were originally introduced
by Alex Graves in 2014 [3]. The basic premise of this model
type is that rather than the neural nodes acting on the data
directly, the model learns how to interact with input on an
external memory (tape), similar to in an actual Turing machine.
This architecture is visualized in Figure 1. For the purpose of
the tests described in this paper, the controller is exclusively

recurrent. Graves presents an argument for the validity of
recurrent controllers in the initial paper, and as such, we felt it
unnecessary to explore the differences between feed-forward
and recurrent controllers.

Neural Turing Machines pose an interesting solution to
problems – rather than learning a black-box model, why not fit
a well understood branch of computing to it instead. Moreover,
this architecture lends itself to learn fundamental algorithms
(sequence of operations / procedure) rather than pure input
relationships.

Fig. 1. Basic architecture of Neural Turing Machines

II. APPROACH

For the purpose of this project, we wished to explore the
effects of the application of the external memory module on a
procedural task and attempt to rationalize the abstraction that
we observe. Two problems are used to realize this goal; the
copy task and basic binary numeracy.

A. Copy Task

In the paper by Graves [3], one of the original dataset that
they used to show the capabilities of the NTM model is the
copy task. The copy task is a function such that returns the
original input, that is, the identity function. In classical Turing
machines, this is a trivial model, as shown in Figure 2. The

copy task takes in a set of n bytes, this represents the data to
be copied and outputs a set of n bytes.

Fig. 2. Turing machine of Copy Task

B. Binary Numeracy

More recent developments in the field of NTMs is shown by
a paper implementing basic binary numeracy [4]. We attempt
to replicate their results by the addition of a sequence of n, k-
sized binary strings, with no consideration for overflow. This
allows us to see how the NTM scales with the addition of
more bit strings in the sequence, to show generalizability. The
data generator is given in Appendix III.

C. Implementation

As much of this research is relatively new, we adapted
some open-source libraries to suit our needs and developed
two classes on top of TensorFlow’s NTMCell class (See
Appendix I). The first of the classes is NTMCopyModel,
which implements the copy model architecture in both LSTM
and NTM fundamental cells in Tensorflow. For the memory, a
reusable external list is used for the controller to act on. The
input and output shapes are identical. This implementation is
given in Appendix II.

Secondly, the NTMNumeracyModel is defined
very similarly, but with the output shape varying to
(batch_size, 1, vector_size) while the input
remains as (batch_size, sequence_length,
vector_size), as in the copy model. This class can be
seen in Appendix III.

III. RESULTS

A. Copy Task

Trains were made for the copy task using a few different
sequence lengths and epochs. Each attempt was made on CPU
rather than with GPU acceleration due to the RAM intensive
properties of the model.

Early training attempts were run over a max length of 8 bits,
with a total of twenty thousand epochs. This often converged
well as shown in Figure 3, but failed to generalize the overall
algorithm and rather. This was revealed through testing as it
showed that the underlying algorithm failed to learn and thus,
a higher training sequence length was necessary.

The settings we found optimal to learn this algorithm was
when trained over one hundred thousand epochs with a max

Fig. 3. Training over a max sequence length of 8

sequence length of 16, with each vector being 8 bits (1
byte) long. The loss of this training is shown in Figure 4.
These graphs show that this particular session converged rather
quickly in the training process over one hundred thousand
epochs. We determine through cross-validation that the model
was not overfit, but rather converged to a local minimum in
terms of loss as seen through Figure 5. This graph shows
that even as we increase the sequence length well above that
untrained number, the algorithm shows nearly zero loss over
100 samples of testing.

Fig. 4. Graph of copy task training loss over various training sequence lengths,
up to sequence length of 16 with NTM

As a reference, an equivalently sized LSTM model (when
compared to the controller) as trained over an equivalent
number of epochs using the same procedural data generation.
The training loss of this model can be seen in Figure 6 and
the testing loss is seen in Figure 7.

B. Basic Numeracy

For the numeracy task, we focused on binary addition over
n, k-sized binary strings, with no consideration for overflow.
Initially, the training max sequence size was set to 8, that
is, n = 8, k = 8. This task is fairly straight forward in Von
Neumann architecture as it is just simple iteration, but we
observed that both NTM and LSTM struggled with a controller
topology of 128 fully recurrent nodes densely connected in 3

2

Fig. 5. Graph of copy task test loss over various unseen testing sequence
lengths, up to sequence length of 27 with NTM

Fig. 6. Graph of copy task training loss over various training sequence lengths,
up to sequence length of 16 with LSTM

layers. The training loss is seen in Figure 8, and the same type
of cross validation test loss is seen in Figure 9, going up to a
max sequence of 12.

We observe the same, but worse for LSTM.

IV. DISCUSSION AND CONCLUSION

Training with a sequence length of 8 performed very well
over most data including sequences of length 9, but failed to
generalize to larger sequences. Some data sequences such as
all zeroes or half zeroes performed badly as well, revealing
that the model failed to generalize training set. With this in
mind, we considered expanding the max sequence length up
to 16. As shown in the results, this helped to generalize the
algorithm and solved the edge cases where the dataset was
homogeneous. This can be seen in Figures 10 and 11 as the
data and output are equivalent, for both all ones and all zeros
respectively.

Fig. 7. Graph of copy task test loss over various unseen testing sequence
lengths, up to sequence length of 27 with LSTM

Fig. 8. Loss over training sequence lengths in numeracy training in numeracy
example

This model was then tested with unseen sequence lengths up
to size 27, which is 11 longer than was originally trained on.
As was shown in the results, this model was able to generalize
well.

This generalizability will allow us to directly compare the
NTM to the LSTM in order to analyze differences.

While the LSTM trained quicker than the NTM, average
final training loss is significantly higher in the LSTM (0.39)
model than the NTM (9.29 × 10−8) model for all sequence
lengths. As shown in the results for the LSTM model, it
failed to generalize the underlying algorithm, but moreover,
even the dataset as a whole. This is likely due to the size
of the RNN itself. In the NTM, the controller was 128 fully
recurrent nodes densely connected in 3 layers. This network
topology as an LSTM is likely too small to generalize this
complex relationship. This may be the case, but illustrates the
point exactly: the addition of external memory in a similarly-
sized network allows it to focus on procedural retention rather
than be bothered by numeric values (in the case of the copy
task). This not only shows the capabilities NTM, but opens
the door for learning of underlying algorithms or procedures,
rather than nonlinear relationships between input and output.

These results illustrate the advantage that NTM models have
over Recurrent Neural Networks, and even more evidently

3

Fig. 9. Shows the loss growth as we expand the unseen scope of the test
sequence length in numeracy example

Fig. 10. Output when training with all ones (note, coloring is dynamic, so
since the two images match, the input and output are identical)

when the loss is viewed in depth. As can be seen in Figure
6, convergence occurs rather quickly and the LSTM model
trains in a shorter time when compared to the NTM model.
A major difference is shown in the convergence value, as
even over several training iterations, the loss for LSTM never
improved past 0.3. The LSTM model converges quickly to
a loss value much higher than that of the NTM, around
0.38 over 4 tests, at approximately 7 orders of magnitude
different. As such, the merits of an NTM model have been
illustrated by performance against the modern RNNs. The
primary difference is the bidirectional associative memory
[2] that exists in RNNs versus the explicit memory in the
NTM architecture. In an RNN model, a form of memory
is introduced to the system by a recurrent connection. This
connection can alter its weight so the previous state alters
the next and induces a memory upon the system. In a NTM
however, a model can store data directly in a memory area,
allowing usage of a true memory between iterations. Through
experimentation, this difference shows the loss to converge at
a much lower value than a traditional RNN. By comparing
Figure 7 to Figure 7, it is shown that NTM can sustain loss
on tests with values outside of the testing length showing
successful learning of copy task, whereas the LSTM model
loss grows steadily after expanding past the training set.

As for the numeracy task, we speculate that the issue of

Fig. 11. Output when training with all zeros (note, coloring is dynamic, so
since the two images match, the input and output are identical)

non-convergence is derived from the size of both the recurrent
controller and the memory not being large enough in the NTM.
We would test larger sizes, but our hardware was maxed out
as is; so this will need to be explored more on more powerful
machines in the future.

A. Future Work

An immediate question arises with the legitimacy of the
NTM architecture - can the underlying Turing machine be ex-
tracted from the distributed NTM controller representation. At
first, one may hastily say no, however, it would reason to stand
that extraction is possible through enumeration of all possible
input values of the machine and define a language L for the
machine T . In order to reconstruct the controller automaton,
a dense graph would be generated, using ε-transitions to each
of the input values, handling each input value as a separate
case. This automaton could then be reduced to simple form.
Much more research needs to be done on this however, as this
is all speculation.

REFERENCES

[1] J. V. Neumann, “First draft of a report on the edvac,” 1945.
[2] B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst. Man

Cybern., vol. 18, no. 1, pp. 49–60, Jan. 1988. [Online]. Available:
http://dx.doi.org/10.1109/21.87054

[3] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” 2014.
[4] J. Castellini, “Learning numeracy: Binary arithmetic with neural turing

machines,” 2019.
[5] S. M. Faradonbeh and F. Safi-Esfahani, “A review on neural turing

machine,” 2019.
[6] M. Collier and J. Beel, “Implementing neural turing machines,” 2018.
[7] GeeksforGeeks, “Turing machine for copying data,” Jun 2018.

[Online]. Available: https://www.geeksforgeeks.org/turing-machine-for-
copying-data/

4

APPENDIX

I. NTM Cell [6]
1 class NTMCell():
2 def __init__(self, rnn_size, memory_size,

memory_vector_dim, read_head_num,
write_head_num,

3 addressing_mode=’
content_and_loaction’, shift_range=1, reuse
=False, output_dim=None):

4 self.rnn_size = rnn_size
5 self.memory_size = memory_size
6 self.memory_vector_dim =

memory_vector_dim
7 self.read_head_num = read_head_num
8 self.write_head_num = write_head_num
9 self.addressing_mode = addressing_mode

10 self.reuse = reuse
11 self.controller = tf.nn.rnn_cell.

BasicRNNCell(self.rnn_size)
12 self.step = 0
13 self.output_dim = output_dim
14 self.shift_range = shift_range
15

16 def __call__(self, x, prev_state):
17 prev_read_vector_list = prev_state[’

read_vector_list’] # read vector in
Sec 3.1 (the content that is

18

read out, length =
memory_vector_dim)

19 prev_controller_state = prev_state[’
controller_state’] # state of
controller (LSTM hidden state)

20

21 # x + prev_read_vector -> controller (
RNN) -> controller_output

22 controller_input = tf.concat([x] +
prev_read_vector_list, axis=1)

23 with tf.variable_scope(’controller’,
reuse=self.reuse):

24 controller_output, controller_state
= self.controller(controller_input,
prev_controller_state)

25

26 # controller_output -> k (dim =
memory_vector_dim, compared to each vector
in M, Sec 3.1)

27 # -> beta (
positive scalar, key strength, Sec 3.1)

-> wˆc
28 # -> g (scalar in

(0, 1), blend between w_prev and wˆc, Sec
3.2) -> wˆg

29 # -> s (dim =
shift_range * 2 + 1, shift weighting, Sec
3.2) -> wˆ˜

30 # (not
memory_size, that’s too wide)

31 # -> gamma (scalar
(>= 1), sharpen the final result, Sec 3.2)

-> w * num_heads
32 # controller_output -> erase, add

vector (dim = memory_vector_dim, \in (0, 1)
, Sec 3.2) * write_head_num

33

34 num_parameters_per_head = self.
memory_vector_dim + 1 + 1 + (self.
shift_range * 2 + 1) + 1

35 num_heads = self.read_head_num + self.
write_head_num

36 total_parameter_num =
num_parameters_per_head * num_heads + self.
memory_vector_dim * 2 * self.write_head_num

37 with tf.variable_scope("o2p", reuse=(
self.step > 0) or self.reuse):

38 o2p_w = tf.get_variable(’o2p_w’, [
controller_output.get_shape()[1],
total_parameter_num],

39 initializer=
tf.random_normal_initializer(mean=0.0,
stddev=0.5))

40 o2p_b = tf.get_variable(’o2p_b’, [
total_parameter_num],

41 initializer=
tf.random_normal_initializer(mean=0.0,
stddev=0.5))

42 parameters = tf.nn.xw_plus_b(
controller_output, o2p_w, o2p_b)

43 head_parameter_list = tf.split(
parameters[:, :num_parameters_per_head *
num_heads], num_heads, axis=1)

44 erase_add_list = tf.split(parameters[:,
num_parameters_per_head * num_heads:], 2 *
self.write_head_num, axis=1)

45

46 # k, beta, g, s, gamma -> w
47

48 prev_w_list = prev_state[’w_list’] #
vector of weightings (blurred address) over
locations

49 prev_M = prev_state[’M’]
50 w_list = []
51 p_list = []
52 for i, head_parameter in enumerate(

head_parameter_list):
53

54 # Some functions to constrain the
result in specific range

55 # exp(x) -> x > 0
56 # sigmoid(x) -> x \in (0,

1)
57 # softmax(x) -> sum_i x_i

= 1
58 # log(exp(x) + 1) + 1 -> x > 1
59

60 k = tf.tanh(head_parameter[:, 0:self
.memory_vector_dim])

61 beta = tf.sigmoid(head_parameter[:,
self.memory_vector_dim]) * 10 # do
not use exp, it will explode!

62 g = tf.sigmoid(head_parameter[:,
self.memory_vector_dim + 1])

63 s = tf.nn.softmax(
64 head_parameter[:, self.

memory_vector_dim + 2:self.
memory_vector_dim + 2 + (self.shift_range *
2 + 1)]

65)
66 gamma = tf.log(tf.exp(head_parameter

[:, -1]) + 1) + 1
67 with tf.variable_scope(’

addressing_head_%d’ % i):
68 w = self.addressing(k, beta, g,

s, gamma, prev_M, prev_w_list[i]) #
Figure 2

69 w_list.append(w)
70 p_list.append({’k’: k, ’beta’: beta,

’g’: g, ’s’: s, ’gamma’: gamma})
71

72 # Reading (Sec 3.1)
73

74 read_w_list = w_list[:self.read_head_num
]

75 read_vector_list = []
76 for i in range(self.read_head_num):
77 read_vector = tf.reduce_sum(tf.

expand_dims(read_w_list[i], dim=2) * prev_M

5

, axis=1)
78 read_vector_list.append(read_vector)
79

80 # Writing (Sec 3.2)
81

82 write_w_list = w_list[self.read_head_num
:]

83 M = prev_M
84 for i in range(self.write_head_num):
85 w = tf.expand_dims(write_w_list[i],

axis=2)
86 erase_vector = tf.expand_dims(tf.

sigmoid(erase_add_list[i * 2]), axis=1)
87 add_vector = tf.expand_dims(tf.tanh(

erase_add_list[i * 2 + 1]), axis=1)
88 M = M * (tf.ones(M.get_shape()) - tf

.matmul(w, erase_vector)) + tf.matmul(w,
add_vector)

89

90 # controller_output -> NTM output
91

92 if not self.output_dim:
93 output_dim = x.get_shape()[1]
94 else:
95 output_dim = self.output_dim
96 with tf.variable_scope("o2o", reuse=(

self.step > 0) or self.reuse):
97 o2o_w = tf.get_variable(’o2o_w’, [

controller_output.get_shape()[1],
output_dim],

98 initializer=
tf.random_normal_initializer(mean=0.0,
stddev=0.5))

99 o2o_b = tf.get_variable(’o2o_b’, [
output_dim],

100 initializer=
tf.random_normal_initializer(mean=0.0,
stddev=0.5))

101 NTM_output = tf.nn.xw_plus_b(
controller_output, o2o_w, o2o_b)

102

103 state = {
104 ’controller_state’: controller_state

,
105 ’read_vector_list’: read_vector_list

,
106 ’w_list’: w_list,
107 ’p_list’: p_list,
108 ’M’: M
109 }
110

111 self.step += 1
112 return NTM_output, state
113

114 def addressing(self, k, beta, g, s, gamma,
prev_M, prev_w):

115

116 # Sec 3.3.1 Focusing by Content
117

118 # Cosine Similarity
119

120 k = tf.expand_dims(k, axis=2)
121 inner_product = tf.matmul(prev_M, k)
122 k_norm = tf.sqrt(tf.reduce_sum(tf.square

(k), axis=1, keep_dims=True))
123 M_norm = tf.sqrt(tf.reduce_sum(tf.square

(prev_M), axis=2, keep_dims=True))
124 norm_product = M_norm * k_norm
125 K = tf.squeeze(inner_product / (

norm_product + 1e-8)) #
eq (6)

126

127 # Calculating wˆc
128

129 K_amplified = tf.exp(tf.expand_dims(beta
, axis=1) * K)

130 w_c = K_amplified / tf.reduce_sum(
K_amplified, axis=1, keep_dims=True) # eq
(5)

131

132 if self.addressing_mode == ’content’:
Only

focus on content
133 return w_c
134

135 # Sec 3.3.2 Focusing by Location
136

137 g = tf.expand_dims(g, axis=1)
138 w_g = g * w_c + (1 - g) * prev_w

eq (7)
139

140 s = tf.concat([s[:, :self.shift_range +
1],

141 tf.zeros([s.get_shape()
[0], self.memory_size - (self.shift_range *
2 + 1)]),

142 s[:, -self.shift_range
:]], axis=1)

143 t = tf.concat([tf.reverse(s, axis=[1]),
tf.reverse(s, axis=[1])], axis=1)

144 s_matrix = tf.stack(
145 [t[:, self.memory_size - i - 1:self.

memory_size * 2 - i - 1] for i in range(
self.memory_size)],

146 axis=1
147)
148 w_ = tf.reduce_sum(tf.expand_dims(w_g,

axis=1) * s_matrix, axis=2) # eq (8)
149 w_sharpen = tf.pow(w_, tf.expand_dims(

gamma, axis=1))
150 w = w_sharpen / tf.reduce_sum(w_sharpen,

axis=1, keep_dims=True) # eq (9)
151

152 return w
153

154 def zero_state(self, batch_size, dtype):
155 def expand(x, dim, N):
156 return tf.concat([tf.expand_dims(x,

dim) for _ in range(N)], axis=dim)
157

158 with tf.variable_scope(’init’, reuse=
self.reuse):

159 state = {
160 # ’controller_state’: self.

controller.zero_state(batch_size, dtype),
161 # ’read_vector_list’: [tf.zeros

([batch_size, self.memory_vector_dim])
162 # for _ in

range(self.read_head_num)],
163 # ’w_list’: [tf.zeros([

batch_size, self.memory_size])
164 # for _ in range(self

.read_head_num + self.write_head_num)],
165 # ’M’: tf.zeros([batch_size,

self.memory_size, self.memory_vector_dim])
166 ’controller_state’: expand(tf.

tanh(tf.get_variable(’init_state’, self.
rnn_size,

167

initializer=tf.random_normal_initializer(
mean=0.0, stddev=0.5))),

168 dim=0, N=
batch_size),

169 ’read_vector_list’: [expand(tf.
nn.softmax(tf.get_variable(’init_r_%d’ % i,
[self.memory_vector_dim],

170

initializer=tf.random_normal_initializer(

6

mean=0.0, stddev=0.5))),
171 dim=0, N=

batch_size)
172 for i in range(self.

read_head_num)],
173 ’w_list’: [expand(tf.nn.softmax(

tf.get_variable(’init_w_%d’ % i, [self.
memory_size],

174

initializer=tf.random_normal_initializer(
mean=0.0, stddev=0.5))),

175 dim=0, N=
batch_size) if self.addressing_mode == ’
content_and_loaction’

176 else tf.zeros([
batch_size, self.memory_size])

177 for i in range(self.
read_head_num + self.write_head_num)],

178 ’M’: expand(tf.tanh(tf.
get_variable(’init_M’, [self.memory_size,
self.memory_vector_dim],

179

initializer=tf.random_normal_initializer(
mean=0.0, stddev=0.5))),

180 dim=0, N=
batch_size)

181 }
182 return state

II. NTM Copy Task Model
1 class NTMCopyModel():
2 def __init__(self, args, seq_length, reuse=

False):
3 self.x = tf.placeholder(name=’x’, dtype=

tf.float32, shape=[args.batch_size,
seq_length, args.vector_dim])

4 self.y = self.x
5 eof = np.zeros([args.batch_size, args.

vector_dim + 1])
6 eof[:, args.vector_dim] = np.ones([args.

batch_size])
7 eof = tf.constant(eof, dtype=tf.float32)
8 zero = tf.constant(np.zeros([args.

batch_size, args.vector_dim + 1]), dtype=tf
.float32)

9

10 if args.model == ’LSTM’:
11 def rnn_cell(rnn_size):
12 return tf.nn.rnn_cell.

BasicLSTMCell(rnn_size, reuse=reuse)
13 cell = tf.nn.rnn_cell.MultiRNNCell([

rnn_cell(args.rnn_size) for _ in range(args
.rnn_num_layers)])

14 elif args.model == ’NTM’:
15 cell = NTMCell(args.rnn_size, args.

memory_size, args.memory_vector_dim, 1, 1,
16

addressing_mode=’content_and_location’,
17 reuse=reuse,
18 output_dim=

args.vector_dim)
19

20 state = cell.zero_state(args.batch_size,
tf.float32)

21 self.state_list = [state]
22 for t in range(seq_length):
23 output, state = cell(tf.concat([self

.x[:, t, :], np.zeros([args.batch_size, 1])
], axis=1), state)

24 self.state_list.append(state)
25 output, state = cell(eof, state)
26 self.state_list.append(state)
27

28 self.o = []

29 for t in range(seq_length):
30 output, state = cell(zero, state)
31 self.o.append(output[:, 0:args.

vector_dim])
32 self.state_list.append(state)
33 self.o = tf.sigmoid(tf.transpose(self.o,

perm=[1, 0, 2]))
34

35 eps = 1e-8
36 self.copy_loss = -tf.reduce_mean(#

cross entropy function
37 self.y * tf.log(self.o + eps) + (1 -

self.y) * tf.log(1 - self.o + eps)
38)
39 with tf.variable_scope(’optimizer’,

reuse=reuse):
40 self.optimizer = tf.train.

RMSPropOptimizer(learning_rate=args.
learning_rate, momentum=0.9, decay=0.95)

41 gvs = self.optimizer.
compute_gradients(self.copy_loss)

42 capped_gvs = [(tf.clip_by_value(grad
, -10., 10.), var) for grad, var in gvs]

43 self.train_op = self.optimizer.
apply_gradients(capped_gvs)

44 self.copy_loss_summary = tf.summary.
scalar(’copy_loss_%d’ % seq_length, self.
copy_loss)

III. NTM Numeracy Task
1 class NTMNumercyModel():
2 def __init__(self, args, seq_length, reuse=

False):
3 self.x = tf.placeholder(name=’x’, dtype=

tf.float32, shape=[args.batch_size,
seq_length, args.vector_dim])

4 self.y = tf.placeholder(name=’y’, dtype=
tf.float32, shape=[args.batch_size, 1, args
.vector_dim])

5 eof = np.zeros([args.batch_size, args.
vector_dim + 1])

6 eof[:, args.vector_dim] = np.ones([args.
batch_size])

7 eof = tf.constant(eof, dtype=tf.float32)
8 zero = tf.constant(np.zeros([args.

batch_size, args.vector_dim + 1]), dtype=tf
.float32)

9

10 if args.model == ’LSTM’:
11 def rnn_cell(rnn_size):
12 return tf.nn.rnn_cell.

BasicLSTMCell(rnn_size, reuse=reuse)
13 cell = tf.nn.rnn_cell.MultiRNNCell([

rnn_cell(args.rnn_size) for _ in range(args
.rnn_num_layers)])

14 elif args.model == ’NTM’:
15 cell = NTMCell(args.rnn_size, args.

memory_size, args.memory_vector_dim, 1, 1,
16

addressing_mode=’content_and_location’,
17 reuse=reuse,
18 output_dim=

args.vector_dim)
19

20 state = cell.zero_state(args.batch_size,
tf.float32)

21 self.state_list = [state]
22 for t in range(seq_length):
23 output, state = cell(tf.concat([self

.x[:, t, :], np.zeros([args.batch_size, 1])
], axis=1), state)

24 self.state_list.append(state)
25 output, state = cell(eof, state)
26 self.state_list.append(state)

7

27

28 self.o = []
29 for t in range(seq_length):
30 output, state = cell(zero, state)
31 self.o.append(output[:, 0:args.

vector_dim])
32 self.state_list.append(state)
33 self.o = tf.sigmoid(tf.transpose(self.o,

perm=[1, 0, 2]))
34

35 eps = 1e-8
36 self.copy_loss = -tf.reduce_mean(#

cross entropy function
37 self.y * tf.log(self.o + eps) + (1 -

self.y) * tf.log(1 - self.o + eps)
38)
39 with tf.variable_scope(’optimizer’,

reuse=reuse):
40 self.optimizer = tf.train.

RMSPropOptimizer(learning_rate=args.
learning_rate, momentum=0.9, decay=0.95)

41 gvs = self.optimizer.
compute_gradients(self.copy_loss)

42 capped_gvs = [(tf.clip_by_value(grad
, -10., 10.), var) for grad, var in gvs]

43 self.train_op = self.optimizer.
apply_gradients(capped_gvs)

44 self.copy_loss_summary = tf.summary.
scalar(’copy_loss_%d’ % seq_length, self.
copy_loss)

45

46

47 def bool2int(x):
48 y = 0
49 for i,j in enumerate(x):
50 y += j<<i
51 return y
52

53 def int2bool(x, seq_length):
54 r = np.array([int(_) for _ in bin(x)[2:]]).

astype(np.uint32)
55 l = len(r)
56 for _ in range(seq_length - l):
57 r = np.insert(r, 0, 0.)
58 return r
59

60 def compute_y(x):
61 seq_length = x.shape[-1]
62 y = []
63 for row in x:
64 r = [0 for _ in range(seq_length)]
65 for entry in row:
66 v = bool2int(entry[::-1])
67 r = int2bool(v + bool2int(r[::-1]),

seq_length)
68

69 y.append([r[::-1][:seq_length][::-1]])
70 return np.array(y, dtype=np.uint32)
71

72 def generate_data(batch_size, seq_length,
vector_size):

73 x = np.random.randint(0, 2, size=[batch_size
, seq_length, vector_size]).astype(np.
uint32)

74 return x, compute_y(x)

8

