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1 INTRODUCTION
As the average human life increases so does the necessary con-

cern for the quality of life. Quality of life in the twilight years is

often greatly affected by health. Moreover, health can be defined

by both mental and physical categories, and often is the case that a

deterioration in physical health will result in deterioration in the

mental category. This is where the importance of physical mobility

and by extension the study of gait speed comes into play. A loss of

mobility in an elderly person is often the leading factor to a loss

of independence. No one wants to become a burden on their loved

ones and the idea of an active mind free from deficits in mental

faculties without the abilities for active physical movement sounds

like a prison to many entering their late years. This is where we

argue for the importance of studying gait speed. Gait speed is the

time one takes to walk a specified distance on level surfaces over a

short distance. It is very important when framing this that it is our

belief that by studying gait speed we can predict many of the later

milestones in a person’s life, but also avoid a trip that leads to a fall

both in the metaphorical sense and quite literally.

In this paper we used data science and skills we had learned

through the semester to help ongoing research with this project’s

sponsor. We successfully created a tool-assisted pipeline to help

refine data and focus the project. With the previous in mind we

feel confident that the pipeline will continue to be of great use in

the study of Gait Speed even as the project continues to evolves in

the future.

2 RELATEDWORK
Gait speed has been proved to be a strong clinical indicator of mo-

bility impairment in patients with neurological disorders and other

related diseases. There are previous efforts spared on the develop-

ment of the methods of gait speed monitoring with assessment, as

well as the gait speed data analysis for patient physical condition

estimation. The participant gait speed data used in this work were

collected from nine different studies of 34,485 adults aged 65 years

or older [2]. In all studies, participants were asked to walk a certain

distance at a regular pace. A stopwatch was used to record the

time it took for participants to walk that distance. [1] and [3] use a

pulsed Doppler radar ranging sensor to measure gait speed with

the primary objective of preventing falls in the elderly. The radar

emits an electromagnetic signal and measures the frequency shift

of the signal to identify the speed of the participant based on the

Doppler effect. The different Doppler signals come from various

moving parts of the body. Microsoft Kinect is used to obtain more

detailed gait features. It is wall mountable at a suitable height with

the ability to capture the moving participant [5]. An algorithm is ap-

plied attempting to capture the footsteps by detecting moments in

time when the feet are standing still. Gait speed can be determined

with these locations and timing information. Recently, this idea was

extended by installing a Kinect-based gait measurement system to

observe the participant’s main living area continuously [6]. This

allowed undisturbed gait measurements to be taken without further

professional assistance after the initial setup. A machine learning

method for gait speed estimation using a configurable array of skin-

mounted, conformal accelerometers was introduced in [4]. It would

also support the use of wearable accelerometer arrays for walking

speed estimation among the patients with gait impairment.

3 WORK ACCOMPLISHED
We developed a data pipeline that focuses on cleaning data and

removing noise. With the timeless mantra of "garbage in garbage

out" in mind, the task of creating a uniform data pipeline began.

Our pipeline defines the creation of A to B and B to A sensor sets.

Without defining the sets, wewould be unable to know that a person

has passed by both sensors and moreover, that two independent

people activated both sensors within a certain period of time.

3.1 Data and Sensors
The data we are using has been collected as part of the Aware

Home Research Initiative (AHRI). Because our research focuses on

measuring gait speed from PIR-based motion sensors, our setup

involves an array of these motion sensors arranged co-linearly.

These sensors have a fixed radius and range through which they

detect motion. Therefore, a subject walking through a hallway

where an array of these sensors is arranged would be detected by

each sensor in the array sequentially with some delay between the

activation of each sensor. By knowing the distance over which these

sensors are arranged as well as the delay between the activation

of each sensor in the array, we can theoretically estimate the gait

speed of a subject. For our preliminary research we make use of

data collected in a home which includes a setup identical to the

one described above with multiple subjects of varying ages as well

as pets. This will be refered to as CEP000 and a reference diagram

for physical sensor locations can be visualized in Figure 1. In this

diagram, notice sensors 𝐴 and 𝐷 represent the Family Room and



Kitchen Room respectively, and 𝐵 and 𝐶 are the end nodes on the

gait array.

Figure 1: Diagram of the Sensor Setup in CEP000

3.2 Candidate Matching Algorithm
Our data cleaning pipeline consists of two main parts, first, from

the raw sensor data we generate a so-called sensor activation, that

is, when the sensor state changes from on back to off. From this,

we can then use these generated sensor activations to generate

candidate gait events, that is, when a person walks from either

sensor A to B or B to A.

3.2.1 Candidate Matching. Below we will break down our Candi-

date Matching in Algorithm 1. First we must define two data struc-

tures, a GaitActivation and a GaitEvent. A GaitActivation contains

the sensor that was activated and the timestamp of the activation.

The GaitEvent is an object that contains the list of GaitActivations

in the gait event and the direction of the gait. We are striving to

assemble a list of quality GaitEvents from a list of GaitActivations.

The algorithm can be described below is our final candidate match-

ing algorithm. Let 𝑋 be the list of sorted sensor activations where

every element 𝑒 ∈ 𝑋 , 𝑒 = (timestamp, sensor). Let𝑚 be the mini-

mum timedelta of a gait event and 𝑛 be the maximum timedelta of

a gait event. Let 𝑢 be a hashset of seen sensor activations.

The general intuition behind this approach is a sliding temporal

window with thresholding. For an event, we look forward in time

and see if we can find a pair sensor matching on the other side of

the gait array within the threshold limits. If so, we consider this

a gait event and add both events to the used set. In theory, this

algorithm is not that complex. We made some smart data structure

decision to minimize the runtime.

We set our parameters to be𝑚 = 0.272 and𝑛 = 5, both in seconds.

We chose 0.272 seconds as a minimum as anything faster than this

would exceed human limits of speed.

3.2.2 Denoising fromAlgorithm 1. As a case study on the algorithm,

we will look at one single day of data to show the effectiveness.

First, consider Figure 2, these are representations of the raw sensor

activations over time for one of the sensors in a sample home.

Notice in the selected sensor, there is a lot of noise and the sensor

is being activated often, which is not represented in the opposite

sided sensor.

Algorithm 1 Candidate Matching

1: procedure CandidateMatching(𝑋,𝑚,𝑛)

2: Assert 𝑚 ≥ 0 ∧ 𝑛 ≥ 0 ∧ 𝑛 ≥ 𝑚
3: 𝑢 ← set()

4: 𝑌 ← list()

5: for 𝑒 ∈ 𝑋 do
6: 𝑡𝑖 , 𝑠𝑖 ← 𝑒

7: if 𝑒 ∈ 𝑢 then continue
8: end if
9: for 𝑓 ∈ 𝑋 [𝑖 :] do
10: 𝑡 𝑗 , 𝑠 𝑗 ← 𝑓

11: if 𝑓 ∈ 𝑢 then continue
12: end if
13: if 𝑠𝑖 ≠ 𝑠 𝑗 then
14: if 𝑡𝑖 < 𝑡 𝑗 ∧ 𝑡 𝑗 − 𝑡𝑖 < 𝑛 ∧ 𝑡 𝑗 − 𝑡𝑖 > 𝑚 then
15: 𝑌 .append(new GaitEvent(𝑒, 𝑓 ))
16: 𝑢.add(𝑒)
17: 𝑢.add(𝑓 )
18: end if
19: end if
20: end for
21: end for
22: return 𝑌

23: end procedure

Figure 2: Raw sensor activation over time for sensor 4 on
2020-11-21

This is problematic as discovering the true gait events in the

noise may be difficult. Using the technique we developed, we see

that these sensor activations can be reduced to Figure 3. Notice

that this is much cleaner and we do not see any long periods of

sensor activation. This matching is generated using time differences

between both sensor 1 and sensor 4 in the dataset.

3.2.3 Contextual Fusion. Our algorithm can be further improved

by incorporating sensor data collected from the environment to

help us better analyze the activation scenarios, a technique cate-

gorized as contextual fusion. Our goal is to extract complete paths

through the gait speed array, so a way to eliminate noise, or sensor

activations that are resulted from incomplete paths or inconse-

quential movements, is to utilize motion sensors that are placed

on both ends of the gait speed array. As shown in Figure 1, we can
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Figure 3: Candidate event activation over time for sensor 4
on 2020-11-21 using Algorithm 1

recognize a complete path if all the sensors are activated contin-

uously in an unidirectional order that can start from either end.

Thus, we could define the criteria of a complete path as a tuple

of unique sensor activations according to their activation time

{𝑠𝑒𝑛𝑠𝑜𝑟𝑎, 𝑠𝑒𝑛𝑠𝑜𝑟𝑏 , 𝑠𝑒𝑛𝑠𝑜𝑟𝑐 , 𝑠𝑒𝑛𝑠𝑜𝑟𝑑 } such that 𝑠𝑒𝑛𝑠𝑜𝑟𝑎 and 𝑠𝑒𝑛𝑠𝑜𝑟𝑑
are motion sensors at both ends while 𝑠𝑒𝑛𝑠𝑜𝑟𝑏 and 𝑠𝑒𝑛𝑠𝑜𝑟𝑐 are the

gait speed array sensor.

The algorithm can be described below is our final candidate

matching algorithm with contextual fusion. Let 𝑋 be the list of

sorted sensor activationswhere every element 𝑒 ∈ 𝑋 , 𝑒 = (timestamp,

sensor). Let𝑚 be the minimum timedelta of a gait event and 𝑛 be

the maximum timedelta of a gait event and 𝑜 be the auxiliary max-

imum timedelta of room activations. Let 𝑢 be a hashset of seen

sensor activations. Let 𝑞 be the set of sensors not in the gait array.

Let 𝑟 be a set of tuples containing non-gait array to gait-array sen-

sor correspondence, that is, which room sensor belongs to which

sensor in the gait array to define order.

3.2.4 Denoising from Algorithm 2. To show the effectiveness of

contextual fusion, we have visualized the activation activity associ-

ated with complete paths that is derived from the same raw dataset

showed previously. We can see that even as compared to Figure 3,

Figure 4 shows less potential noises. Like any classification problem,

we cannot ensure that everything that is being filtered out by the

algorithm is unwanted noise, nevertheless we do have an increased

degree of confidence of our remaining data being relevant.

Figure 4: Candidate event activation over time for sensor 4
on 2020-11-21 using Algorithm 2

Algorithm 2 Candidate Matching with Contextual Fusion

1: procedure CandidateMatchingCF(𝑋,𝑚,𝑛, 𝑜)

2: Assert 𝑚 ≥ 0 ∧ 𝑛 ≥ 0 ∧ 𝑛 ≥ 𝑚 ∧ 𝑜 ≥ 0

3: 𝑢 ← set()

4: 𝑌 ← list()

5: for 𝑒 ∈ 𝑋 do
6: 𝑡𝑖 , 𝑠𝑖 ← 𝑒

7: if 𝑒 ∈ 𝑢 ∨ 𝑠𝑖 ∉ 𝑞 then continue
8: end if
9: for 𝑓 ∈ 𝑋 [𝑖 :] do
10: 𝑡 𝑗 , 𝑠 𝑗 ← 𝑓

11: if 𝑓 ∈ 𝑢 ∨ 𝑠𝑖 = 𝑠 𝑗 ∨ ¬(𝑡𝑖 ≤ 𝑡 𝑗 ∧ 𝑡 𝑗 − 𝑡𝑖 < 𝑜) then
continue

12: end if
13: if (𝑠𝑖 ∈ 𝑞 ∧ (𝑠𝑖 , 𝑠 𝑗 ) ∉ 𝑟 ) then continue
14: end if
15: for 𝑔 ∈ 𝑋 [ 𝑗 :] do
16: 𝑡𝑘 , 𝑠𝑘 ← 𝑔

17: if 𝑔 ∈ 𝑢∨𝑠𝑖 = 𝑠𝑘 ∨𝑠 𝑗 = 𝑠𝑘 ∨¬(𝑡 𝑗 ≤ 𝑡𝑘 ∧𝑡𝑘 −𝑡 𝑗 <
𝑛) then continue

18: end if
19: for ℎ ∈ 𝑋 [𝑘 :] do
20: 𝑡𝑙 , 𝑠𝑙 ← ℎ

21: if ℎ ∈ 𝑢 then continue
22: end if
23: if 𝑠𝑖 ≠ 𝑠 𝑗 ≠ 𝑠𝑘 ≠ 𝑠𝑙 ∧ 𝑠𝑖 , 𝑠𝑙 ∈ 𝑞 ∧ (𝑠𝑖 , 𝑠 𝑗 ) ∈

𝑟 ∧ (𝑠𝑘 , 𝑠𝑙 ) ∈ 𝑟 then
24: if 𝑠𝑘 < 𝑠𝑙 ∧ 𝑠𝑙 − 𝑠𝑘 < 𝑜 then
25: 𝑌 .append(new GaitEvent(𝑒, 𝑓 , 𝑔, ℎ))
26: 𝑢.add(𝑒)
27: 𝑢.add(𝑓 )
28: 𝑢.add(𝑔)
29: 𝑢.add(ℎ)
30: end if
31: end if
32: end for
33: end for
34: end for
35: end for
36: return 𝑌

37: end procedure

3.3 Problems we Encountered
Initially, we had considerable trouble acquiring the necessary data

as much of it contained personally identifiable information about

each research participant’s home, name, family, and age. Before we

were allowed access to this data each team member had to submit

paperwork to GA Tech’s Institutional Review Board. After going

through the proper channels to acquire the data we began to try and

apply some of the ideas we had brainstormed. Almost immediately

we began to notice noise in the data. predominantly this noise was

caused either by sensor placement consistency or sensor anomalies

caused by outside elements. An example of sensor noise caused by

an outside element was that in one instance while recording data a

sensor fell from its mount and into a potted plant.
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Refusing to throw out any old data, we knew that if we could

isolate the noise and prove it to be consistent for a wide range of

events then we could isolate it from the bulk of the data. We elabo-

rated on our methodology of removing noise in another section. An

additional issue we encountered was that half of the data collecting

since the original project’s inception was was in a different format.

This created issues of Data uniformity, as such part of the effort in

developing the pipeline, was dedicated to converting all styles and

formats of data to a format that was uniform across all events.

4 RESULTS/DISCUSSION
We proposed two candidate matching algorithms in this project,

the second algorithm utilized more events captured by more sensor

activation and thus provides us with more implicit matching events

of higher precision.

Using the output of the candidate matching, we are able to es-

timate the speed of a subject moving through the area where the

sensors are mounted. By dividing the distance between the sensors

by the time delay between the candidate activation, we can derive

gait speed estimates throughout the day.

When we apply this process over all the observations of the data

for the home, we see that we are presented a multi-modal histogram

(as seen in Figure 5); which is expected as multiple people and

creatures are living in the home - which is a promising result for

our technique.

As expected, we observe higher gait speed estimates during the

day, peaking around the morning when subjects may be in a rush

to get ready for work or school. During night-time when subjects

are likely to be asleep, we see minimal gait activity in Figure 7.

In CEP000, the last sensor is mounted right above the kitchen,

therefore it contains a large amount of noise which comes from

subjects moving in the kitchen not necessarily co-linear with the

gait speed array. Our techniques for noise reduction outlined above

seem to do a good job of removing such noise as illustrated in Figure

6.

Figure 5: Candidate gait event times over all observations

We further extended and applied our algorithm to more residen-

tial room scenarios with different floor plans and settings, as we

can see from Figure 8 to 13, we are obtaining similar results which

could validate the functionality of our algorithm.

Figure 6: Frequency of gait events at varying times of the
day

Figure 7: Average speed of subject at varying times of the
day

(a) Gait event times (b) Frequency of events (c) Average speed

Figure 8: Gait information of CEP001

(a) Gait event times (b) Frequency of events (c) Average speed

Figure 9: Gait information of CEP002
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(a) Gait event times (b) Frequency of events (c) Average speed

Figure 10: Gait information of CEP003

(a) Gait event times (b) Frequency of events (c) Average speed

Figure 11: Gait information of CEP004

(a) Gait event times (b) Frequency of events (c) Average speed

Figure 12: Gait information of CEP005

(a) Gait event times (b) Frequency of events (c) Average speed

Figure 13: Gait information of CEP006

5 FUTUREWORK
Future work may involve exploring more advanced algorithm for

the processing of the data in order to correlate activations of the

sensors with higher precision. Specifically, we hope to incorporate

the room activation into a more sophisticated technique in a future

iteration of our algorithm. Additionally, methods can be explored

which are robust to multiple subjects walking through the hallway

as well as pets and object such as smart vacuum cleaners. More-

over, we hope to apply our algorithm into multiple room scenarios

with various settings such as floor plans, etc. Supervised learning

approaches may also be applied to develop a system with more

accurate predictive capabilities given ground truth readings of gait

speed events.

6 CONCLUSIONS
In closing, we found that both approaches we created were very

effective in removing noise from the data and strikingly effective

in isolating true gait events. With this newly cleaned and isolated

data were able to apply both the algorithms that we created to

identify complete Gait events. With this information, we were able

to generate statistical information and gain greater insight into the

mobility of the elderly. It is our hope that this series of pipe-lining

tools that we created will be useful in furthering the research of

Gait Speed Measurement and analysis for health purposes. It is also

the hope of the team that the research and finding will be able to

help other areas of health research.

REFERENCES
[1] Paul E. Cuddihy et al. 2012. Radar walking speed measurements of seniors in their

apartments: Technology for fall prevention. Engineering in Medicine and Biology

Society (EMBC). https://doi.org/10.1109/EMBC.2012.6345919

[2] Stephanie Studenski et al. 2011. Gait speed and survival in older adults. Columbia

University. https://doi.org/10.1001/jama.2010.1923

[3] Tarik Yardibi et al. 2011. Gait characterization via pulse-Doppler radar. Pervasive
Computing and Communications Workshops (PERCOM Workshops). https:

//doi.org/10.1109/PERCOMW.2011.5766971

[4] Ryan S. McGinnis, Nikhil Mahadevan, Yaejin Moon, Kirsten Seagers, Nirav Sheth,

John A. Wright, Steven DiCristofaro, Ikaro Silva, Elise Jortberg, Melissa Ceruolo,

Jesus A. Pindado, Jacob Sosnoff, Roozbeh Ghaffari, and Shyamal Patel. 2017. A
machine learning approach for gait speed estimation using skin-mounted wearable
sensors: From healthy controls to individuals with multiple sclerosis. PLoS ONE.

https://doi.org/10.1371/journal.pone.0178366

[5] Erik Stone andMarjorie Skubic. 2011. Evaluation of an inexpensive depth camera for
in-home gait assessment. Journal of Ambient Intelligence and Smart Environments

3.4. https://doi.org/10.3233/AIS-2011-0124

[6] Erik Stone, Marjorie Skubic, Marilyn Rantz, Carmen Abbott, and Steve Miller. 2014.

Average In-Home Gait Speed: Investigation of a New Metric for Mobility and Fall

Risk Assessment of Elders. Gait and Posture 41 (09 2014). https://doi.org/10.1016/

j.gaitpost.2014.08.019

5

https://doi.org/10.1109/EMBC.2012.6345919
https://doi.org/10.1001/jama.2010.1923
https://doi.org/10.1109/PERCOMW.2011.5766971
https://doi.org/10.1109/PERCOMW.2011.5766971
https://doi.org/10.1371/journal.pone.0178366
https://doi.org/10.3233/AIS-2011-0124
https://doi.org/10.1016/j.gaitpost.2014.08.019
https://doi.org/10.1016/j.gaitpost.2014.08.019

	1 Introduction
	2 Related work
	3 Work Accomplished
	3.1 Data and Sensors
	3.2 Candidate Matching Algorithm
	3.3 Problems we Encountered

	4 Results/Discussion
	5 Future Work
	6 Conclusions
	References

