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Abstract 

Data mining plays a key role in search template generation for the analysis of large 

overhead image sets, particularly that of ontological storage, or geospatial-temporal semantic 

graph (GTSG). It provides an efficient method for determining the median of accuracy and 

consistency for template generation, one of which human analysts are required to provide 

substantial time and effort to create comparable results. The implementation of template 

generation is mostly autonomous and fairly straightforward when compared to current 

techniques. These templates are used in feature analysis of height and landform fused data, and 

allow the easy construction and analysis of any desired query. This process of template 

generation has useful implications in a wide variety of fields, and can transform correlations of 

random data into insightful and useful information. 
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Introduction 

Data mining is the discovery process that analyzes data and generates useful information 

from it (Pandya, 2015). This process of data mining is useful for a variety of applications, but 

specifically, for template generation to analyze large overhead image sets. This process of 

overhead imagery analysis is described as being a “key technology in commercial and national 

security” (Brost, McLendon, Parekh, Rintoul, Strip, & Woodbridge, 2014). They detailed a 

process where they begin by pre-processing large amounts of information through a primitive 

ontological storage, or geospatial-temporal semantic graph (GTSG). The information held in the 

GTSG shows relevant ontology through nodes and edges. These nodes show certain 

“groupings’” composition and properties, whether it is a field or a building, its information is 

classified and stored in the GTSG. The term properties, in this scope, can be defined as empirical 

data: area, height, perimeter, color, eccentricity, etc., and these properties can be queried to 

obtain relevant information regarding an analyst's request. The query is not searching on a pixel-

by-pixel basis, rather through a “natural ontological query”; for example, finding a building that 

is one year old, within 50 meters of a large body of water, and also next to a parking lot. This 

type of querying can give a variety of benefits when “compared to traditional search strategies”, 

as expressed by Brost et al. (2014). These benefits include: complex image searches, time-

sensitive changes, extraneous node elimination, data fusion - in the form of Light Detection and 

Ranging (LiDAR) data, normalized digital surface model (nDSM) and Geographic Information 

System (GIS) data, and decomposing images into large areas within the ontology. 

The function of data mining in the case of overhead imagery analysis resides in the 

advanced search method, and specifically the function of composing templates that can be used 

on a broad scale, not just for one particular query. This relevance and advantage is due to the 
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potential optimization available and definite efficiency benefits that will occur as a result. As 

stated previously by Brost et al. (2014), the analyst would construct the search query through “a 

primitive ontology based on regions that have been previously identified in the land cover map” 

and by the “relationships that have been assigned to specific pairs of nodes”. This means that 

analysts have to meticulously plan, analyze, and compute empirical data in order to design a 

query template; with the automation provided by data mining, only a few key items need to be 

identified in order to generate a query template, and the whole process of identification and 

selection can be simplified to an automated process. 

Data mining is one of the most important steps in the process of knowledge discovery in 

databases (KDD). Traditional methods of turning raw data into useful information rely on 

manual analysis and interpretation (Fayyad, Piatetsky-Shapiro, & Smyth, 1996), which is 

inefficient and sometimes inaccurate. Data mining provides an alternative to conventional 

methods that have proven to be efficient and accurate in almost all cases. It works by finding 

correlations in large amounts of data by “understanding the application domain” (Fayyad et al., 

1996), and building a model that can be analyzed against another target dataset - in this case, a 

true/false positive/negative system. It then analyzes sets of data and determines useful 

correlations that can be interpreted as useful information. Fayyad et al. (1996) defines that 

process in a nine step manner: identifying the KDD goal, creating a target dataset, data cleaning 

and pre-processing, data reduction and projection, matching goals of KDD process to a particular 

method, exploratory analysis and model selection, searching for patterns of interest through data 

mining, interpreting mined patterns, and understanding the outputted data. This details the entire 

process that one would go through in the process of data discovery and serves as a foundation for 

the effectiveness of this method of data analysis.  
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This project was inspired by and built off of prior research detailed by Brost et al. (2014) 

and was used to expand upon their research to increase the overall accuracy and efficiency of the 

template generation process. It incorporated ideas that were generated by Brost et al. (2014), and 

uses these as a fundamental element on which the project was designed to improve. In the 

remainder of the paper, the process of developing templates using data mining will be explored, 

and how it can account for variance. The balance of accuracy and consistency that machine 

learning analysis can provide will be explored, as well as tested forms of typical data analysis. 

Finally, the validity of this method will be evaluated, as well as other applications using these 

methods will be explored. 

Materials & Methods  

 This process of template generation via data mining was inspired by an opportunity to 

contribute to a pre-existing project, and help improve the efficiency of the overall project. Due to 

no existing process regarding automated template generation being in place, a process needed to 

be created. The information for the GTSG is stored in a SQLite database; therefore it can be 

queried using structured query language (SQL). Also, the data mining utility used was the 

Waikato Environment for Knowledge Analysis (WEKA), an open source data mining utility that 

allows “researchers easy access to state-of-the-art techniques in machine learning” (Hall, Frank, 

Holmes, Pfahringer, Reutemann, & Witten, 2009). Through documentation provided by WEKA, 

SQLite databases were accessible and usable through WEKA, creating an opportunity to query 

and analyze directly from the GTSG.  

With the environment established, work could begin on template generation and 

experimentation. A search used previously as detailed by Stracuzzi et al. (2015) involved finding 

high schools in Anne Arundel County. This example served as a proof of concept for the idea 
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that data mining was a viable method to generate templates for searches, and that it would 

inherently be more accurate and find more correlations when compared to human analysts. This 

search was broken down into six key elements: classroom building, parking lot, football field, 

tennis court, baseball field, and their relativity to each other. To get a visual representation for 

how these elements play a role in the determination of search results, see Figure 1. These criteria 

were based on the land cover region labels that were assigned to the aforementioned 

“groupings”; these include: buildings, trees, grass/shrub, dirt, water, road, and other paved areas 

(Brost et al., 2014). These land cover regions represent the node’s type or its composition in 

relativity to the proposed question. It may also be important to give some quantitative 

information about this dataset to provide context, the Anne Arundel County set had generated a 

GTSG database with over 1.2 million node elements (Stracuzzi et al., 2015), all containing 

empirical property information for analysis, which correlates to a land area of just over 600 

square miles as seen in Figure 7. Previously, this search had been used as a test for the search 

function and had been used to build quality score matches (Brost, Phillips, Robinson, Stracuzzi, 

Wilson, & Woodbridge, Accepted), so it had an analyst's interpretation of the template already in 

place. This template had been established to the best accuracy they could determine, which was 

an identification accuracy of 99.97% (statistic calculated with overall potential amount of high 

school nodes compared to actual nodes found). Due to the existence of a template already in 

place, this gave way for possible practical improvements. 

Data mining is an automated process once the proper information is acquired. The issue, 

in this case, was retrieving all of the necessary information. In the case of the high school search, 

a set of true positives was retrieved in order to examine for possible quantitative similarities in 

order to establish a baseline for the template criteria. For data mining to be as accurate as 
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possible, large amounts of data are required to make an accurate correlation, in essence, the 

larger the true positive set, the more variance that will be accounted for. With this set, 

correlations in the empirical data were determined and the best identifiers were revealed through 

the process of data mining. To give a step-by-step explanation of how the generation process 

works (flowchart visualized in Figure 8) would look like this: first, an established baseline of 

land cover types would be applied to each sub-search in the process, in the high school search, a 

football field would be an example of a sub-search, and this is classified as a grass field type. 

Second, this baseline would run through a GeoSearch, as detailed by Brost et al. (2014), and then 

a very large database would result with various types of land covers – at this point it is important 

to note that no criterion have been applied to any empirical properties, simply a search by land 

type. Then the user would use Quantum GIS (QGIS), software that allows the visualization of 

the generated SearchGraph, to analyze and find the true positive subsets for each true positive; 

meaning that for one high school, the user would have to find all the corresponding sub-features. 

With all of these noted, the user would then input that information into a few different SQL 

queries, and then run the resultant data through WEKA. Once in WEKA, the user could run the 

data through C4.5, and if it showed inconclusive results, then the user would apply a spread 

subsample and test again. They would do this for each empirical property to discover true 

positive indicators. Once all empirical data points were finished, the user would compile these 

into the original GeoSearch format, and re-run to ensure the accuracy and conclude the results. 

That is the basis of the process, being able to find relevant correlations through pre-existing data, 

and turning that raw data into a practical application.  

The newly generated criteria that were established through comparing the true positive 

set with false negatives were essentially the template for searches. To ensure the validity of this 
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method, the new criteria were applied to the whole dataset, which revealed all matches found in 

the whole dataset. This was done by the following process: first, a GeoSearch on each sub-search 

was run with all of the newly generated criteria, so in this case, it was done five times. Then, the 

newly found nodes were analyzed against the edge distance portion of the template which was 

established by the true positive set, resulting in all the possible high school results. This method 

of template generation shows an accuracy percentage of 99.99% (statistic calculated with overall 

potential amount of high school nodes compared to actual nodes found). This outcome sheds 

light on the true percentage improvement of this system of data analysis compared to previous 

methods. 

Data mining is only as effective as the algorithm used to analyze the data. In this case, the 

C4.5 algorithm was applied for a variety of reasons. As a classification algorithm, decision tree 

algorithms are “easy to understand and cheap to implement” (Chauhan & Chauhan, 2013). The 

C4.5 algorithm proved to be the most accurate and least intensive classification algorithm that 

WEKA had to offer, addressed later in the paper. Due to the inherent issues that may arise with 

varied and random data – noisy data, missing data, and scale of data – C4.5 proved to be a good 

interpreter and still able to remain statistically significant despite issues with the data (Ruggieri, 

2001).  

When data is passed through the C4.5 algorithm, sometimes the amount of noise and 

impurities in the data can cloud the correlations. When this happens, a filter called spread 

subsampling can be applied to the data. Spread subsampling is a process in which the user 

specifies the “maximum spread between the rarest and most common class” (Pooja, 2012). This 

reduces the amount of extraneous and irrelevant data points by simply averaging and scaling 

down the most common class to the ratio to match the rarest class input by the user. In this case, 
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the rarest cases would contain around 15 points of data, and the common class could contain 

upwards of 4,000 points of data, sometimes even more. Essentially, spread subsampling is a 

method of reducing the noise in the data, maintaining the spread of data at relatively the same 

levels, while at the same time, reducing the ratio of data (as seen in Figure 5). It is important to 

note that as the data begins to approach a one-to-one ratio between the rarest and common 

classes, the criteria generated by C4.5 will become less and less accurate, in some cases. 

However, in other cases, outliers can be removed through this method, allowing more precise 

criteria to be formed. This is due to the concept of scalability; as the data scales downward, it 

loses clarity, and data points become arbitrary averages of a conglomeration of former data 

points. This process proved to be useful as it helped to clear noisy data points and generated 

overall tighter criteria by eliminating outliers. 

Results  

The two primary forms of machine learning, supervised and unsupervised, have different 

methods of accomplishing a similar goal. Supervised learning is a process in which the user 

supplies a labeled data set, called the training data, and the algorithm uses this to make an 

informed decision. The other cases, unsupervised, does not use a supplied training set, but rather, 

works without specifically labeling sets of data, and the algorithm itself is left up to group and 

distinguish the data (Lindsay & Woodbridge, 2014). Of these two forms of interpretation, there 

are a variety of machine learning analyses. From supervised interpretation, classification seemed 

most appropriate. Classification is the form of data analysis that groups data together based on 

quantitative similarities, often using a tree or other form of flow chart to dictate class. From 

unsupervised interpretation, clustering provided results that best fit the objective (Awadhesh, 

2012). Clustering is an unsupervised learning method that works by assessing the similarities 
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within the data, and forming groupings to match items of similar characteristics. Tests were run 

to compare which of these two methods would be a better determinant of template conciseness 

and overall accuracy. Clustering seemed like a reasonable approach to the task of grouping 

similar attributes of a high school, as did classification, because it had worked by finding trends 

in data points, and correlating those to a reasonable conclusion. The classification algorithm used 

in the testing was the aforementioned C4.5 classification algorithm. The clustering algorithm that 

was tested was the Expectation-Maximization (EM) clustering algorithm (Bradley, Fayyad, & 

Reina, 1998). The test was run on the football field sub-search because it would be the best 

chance that EM clustering would have at clustering the similar features, as all football fields are 

fairly standard. After the test concluded, it was determined that a total of 70 results were found 

across all of the six empirical data points: area, eccentricity, major axis, minor axis, orientation, 

and perimeter. For an example of how this criteria can be seen visually, see Figure 6. This is 

definite on the scope of analysis that occurred and constitutes a refinement of 85.86% meaning 

that there were 495 possible high school football fields found. It is also important to note that 

there was a pre-applied eccentricity filter on the football fields so that the algorithm was not 

attempting to cluster every grass field in all of Anne Arundel County, as it would have originally. 

Then the classification was examined, and running against the same set of data, it resulted in a 

possible 27 high school football fields. This seemed a lot more reasonable because it constituted 

a 94.55% overall reduction in nodes. Though both of these methods showed a 1.0 True Positive 

(TP) rate, the EM clustering held a higher False Positive (FP) rate, 0.121, when compared to 

C4.5 classification that had a FP rate of 0.033. Analyzing these statistics, it can be seen that even 

though clustering works as a method of grouping similarities, in this instance, classification 

seems to give better results without sacrificing any accuracy. 
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To give quantitative perspective to the actual reduction of the aforementioned high school 

search, it is important to examine the analyst's interpretation of the results for context. The 

analyst established a template that addressed all six of the criteria and resulted in 67 possible 

high schools, including true and false positives. This is compared to the procedurally generated 

template, which resulted in 27 possible high schools. Both sets of data retained the original 12 

true positives, the points of information which generated the template, but also constituted a 

72.73% reduction in false positives. Even though there was only a difference of 40 results, that 

itself is an improvement in accuracy of 59.70%. Due to this process, however, an analyst would 

now only have to sift through two-fifths of the data that they would have originally had to by 

using a machine learning based template to find possible targets. This process assumes that if the 

template were applied to another instance of a GTSG, the pre-generated template held the same 

ratio of true positives to false positives. An improvement of this magnitude would mean that the 

criteria was tightened to ensure that it would still be able to account for the variance within the 

true positive set, but also eliminating extraneous and irrelevant data to the search.  

To reiterate, the goal of the template generation was to minimize the false positive 

results, while at the same time, retain and discover true positives in the set. Because the 

foundation for the template was built of off user-inputted true positives, the template built a 

variance in the 12 data points provided and determined 15 other buildings that met the criteria. 

Of the results, 13 of the 15 false positives were in some form or another, a type of (high school, 

middle school, and elementary schools). Of the other non-school results, they fit very well within 

the bounds of the template and were just coincidental due to the structure of building, being 

large, and various parking lots scattered around the main building. But re-analyzing the ratio of 

schools found, it can be seen that there are 25 schools found to the total 27 results, which is more 
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that coincidental. Upon further examination, and it was revealed that schools look oddly identical 

from a purely overhead, quantitative perspective. A high school’s hub, the classroom building, 

and spoke, other features, relationship (which is generated by the search function of the analysis) 

can be examined to see this exact phenomenon. In Figure 2, a high school building can be 

observed and it can be seen that the building and its features are fairly centralized with no 

oddities or rare occurrences, just a standard high school grouping. Then Figure 3 is analyzed, 

and a very familiar scene can be observed. Figure 3 looks almost identical to Figure 2 in the 

sense that they both have numerous parking lots spread across the campus; they both have 

baseball fields that are relatively centralized to the classroom building, and neither of them have 

a football field because certain features were made optional by the template. Because these two 

buildings share similarities, they are both classified as “high school” under what the template 

believes. This occurrence does not only happen a few times, but rather 13 times, 86.66% of the 

false positives. Consequently, the template sees all schools as “high schools” and cannot seem to 

differentiate them from the true high schools. As Murphy (2012) mentions, extrapolating and 

interpreting data through methods of data mining can sometimes result in the “wrong result”. 

This is due to the fact that the variance of high school cannot be tightened any further without 

compromising true positives. If the template were to be designed to only find a few results that 

were without doubt true positives, then the template would be compromising the accuracy for 

consistency, but to want to produce results that are both accurate and consistent, a broader 

variance needs to be accounted for, thus resulting in some false positives. If this is viewed from a 

different perspective and true positives are classified as schools in general, then it would 

constitute a 92.59% true positive rate with only two false positives being found. This fact leads 

to the conclusion that from a one-dimensional, quantitative perspective, a machine learning 
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software has to either compromise accuracy or consistency in order to achieve a better high 

school true positive rate. The C4.5 algorithm found a good median and was able to integrate the 

better accuracy and consistency into one template in order to retain the best possible true positive 

to false positive ratio as possible.  

The idea of a tradeoff between accuracy and consistency is one that has an intrinsic role 

in the selection of the value of predictors within the C4.5 algorithm. Because the C4.5 algorithm 

is a classification decision tree algorithm, it uses a variable selection method of choosing which 

of the empirical properties would be indicative of a correlation. The main issue is how C4.5 

identifies which variables or attributes in a dataset are the best for classification because 

“irrelevant and redundant variables often degrade the performance of classification algorithms”, 

in terms of speed, consistency, and prediction accuracy (Martinez & Fuentes, 2005). As 

aforementioned, these datasets are loaded with noisy data, irrelevant data, and overall varied 

data. This can cause large issues for a data mining set, and sometimes outliers can impede the 

accuracy of a template. As an example of this idea, for the football field search (Figure 4) and it 

is notable that the edge distance is up to 125 meters. Some may say that this must be an error, as 

football fields often reside further away from school buildings, and often not even near the 

campus, and they would be correct in saying so. This is one example of where consistency 

needed to be valued over accuracy, and outliers from the true positive set were excluded in the 

formation of the template in order to make the template better suited for variance, and overall 

more adaptive for other scenarios. 

 

 

 



14 
 

Illustrations  

 

Figure 1. An example of outputs seen 

in the program Quantum GIS (QGIS), 

an open-source program that gives 

visualizations to the results of a 

specific GeoSearch query (Brost et al. 

2014). This image shows a high 

school, middle school, and an 

elementary school, all side by side.  

 

Figure 2. This image gives a 

visualization of the hub-spoke 

relationship that these share, and what 

exactly “distance edge” means. This 

is a high school building, showing 

spokes to parking lots, tennis courts, 

and a baseball field. 
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Figure 3. Like Figure 2, this image shows 

a middle school, with spokes to parking 

lots, and a baseball field. This image was 

generated by O'Neil-Dunne et al. (2013) 

and GeoGraphy (Brost et al. 2014) and has 

the land cover filter active. 

 

Figure 4. In this image, the final criteria of 

the template are shown. This gives a 

visual representation to the limits imposed 

by the generated criteria, and how specific 

the correlations can be made to be.  

 

Important note: In this image, the values 

are rounded for the sake of presentation, 

and for digression of exact values. 

 

Figure 5. This is an 

example of a 10:1 

spread subsampling, 

showing the reduction in 

data on the dataset. 
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Figure 6. Example C4.5 decision tree 

outputs. 

 

Figure 7. Shows the size of images 

used in analysis. Ranging from 1.5 

gigapixels, to 5.7 gigapixels in clarity. 

 

Figure 8. This image shows the process 

of template generation, and serves as a 

visual representation of the steps taken 

in the Materials & Methods section. 

Discussion  

 Template generation is a pre-existing process in place for the analysis of large overhead 

imagery sets for the purpose of feature analysis. The addition of data mining is a simple addition 

and a straightforward implementation that would increase the efficiency of the overall search 

function with few side effects or detracting factors. The weakness of this method, simply put, is 

that it is not a human analyst. A template is unable to make a decision based on non-quantitative 

ideas. Data mining and data interpretation share a one-sided perspective, only able to use the 

information provided to them, and have limited ability to estimate data or provide information 
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based on inference. This one downside is outweighed by the fact that it is an adaptive learning 

machine and does what may take a human analyst days or even weeks, in a matter of minutes 

with almost perfect accuracy. Another limitation faced by machine learning techniques is the 

“Uncertainty in AI” (Fayyad et al., 1996). This expounds on the thought of one-sided 

perspectives, as Fayyad et al. breaks it down into three key elements: “issues for managing 

uncertainty, proper inference mechanisms in the presence of uncertainty, and the reasoning about 

causality”. All three of these ideas reflect the mentality that AI or data interpreting algorithms 

have a limited perspective on the data provided, and can only infer data in the presence of 

uncertainty to a certain extent, at which point the error will likely rise. These theories are 

applicable to this research because the interpretation algorithm that classifies the data analyzes 

and infers, but will not always see the full picture; therefore, some degree of uncertainty will 

always be present (Brost et al. Accepted).  

However, the uncertainty in this specific instance is merely an account of variance, and 

thus, compensation in the accuracy of the prediction to account for the consistency. To show the 

validity of the results, some of the statistics of the results will be analyzed. When looking at the 

sub-search mean absolute error (MAE), which measures the average magnitude of the errors in a 

set of predictions, it may be noted that none of them were more than 0.13 in value, which, from a 

statistical perspective, shows low error in the correlations. The range of MAE is as follows: 0.13 

being the most errored with the classroom building sub-search, and 0.05 being the least errored 

with the football field sub-search, while all of the others were found to be intermediary errors. 

This trend is due to the variance in each of the subsets, where there are fewer variations in the 

shape and form of football fields, opposed to classroom buildings, which have a wide variety of 

sizes, shapes, and form, so it can be difficult to pinpoint a criterion that solely points to true 
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positives. These statistical analyses reveal that the template was, in fact, able to classify a pattern 

within the sub-searches, leading to a more accurate and consistent search template to be formed. 

 When this research is compared to existing documentation in the field, not much 

emphasis has been recorded for the purpose of making inquiry optimizations, specifically in the 

field of overhead image analysis. This is a very specific problem, one that has a limited targeted 

audience. That does not mean that it does not have applications elsewhere, however. Imagine a 

store that sells food, and they log the customer name and all the purchases that customer makes. 

They could take this information and create a template to run against their customers as a 

predictor to see which ones are more likely to purchase another product. This is a common 

understanding of data mining, using existing information as a predictor, and this is essentially 

what a template’s purpose is, to create a baseline that has serves as an accurate and consistent 

predictor of who or what will perform the desired outcome. As Fayyad et al. (1996) discuss, data 

mining and knowledge discovery are at the forefront of discovery, and there are a wide variety of 

applications and approaches that exist. Information stored in databases have little purpose and 

meaning, but some of it may be important; it just “has not yet been discovered or articulated yet” 

(Witten & Frank, 2005). The conclusions drawn from this method are in agreement with the 

current understanding of data mining and data analysis, the research presented here shows that 

data mining has a role in almost any medium as it provides consistent and accurate results.

 As previously explained, the process to generate templates is somewhat lengthy and user-

intensive. To align with the goal of this project, a program was written in C++ using WEKA data 

mining library to essentially remove almost all user interaction, ensuring that the queries were 

automatically generated and executed, and that there was little room for human error. Actually, 

the only human interaction that would take place would be the entering of the true positive 
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information and some other necessary information into an input file. Then, the user would just 

have to run the program and multiple criteria lists would be generated from the empirical data 

analysis, and those would be analyzed, parsed, and outputted for the user. It took what was a 

seemingly complex user task, and made it into one that was fully autonomous, and resulted in the 

same template as its human counterpart did using the same operations. 

Conclusions and Future Work  

The purpose of this process was not simply for one template to be formed, but as a 

foundation for further research and development to be performed on the topic of template 

generation. Even though this system proved to be successful in accomplishing the task at hand, a 

wide variety of improvements still need to be addressed. For example, a system in which certain 

sub-searches could hold higher value over others, a weighting system ideally, needs to be 

implemented into the process to allow the user to specify importance of certain sub-searches over 

others, and allow some sub-features to be optional. In addition, the described process was tested 

on a relatively small scale, controlled environment – small scale referring to one county as 

opposed to a country or even a continent. There becomes an evident issue in solving this, 

because the computational power required to process that amount of data would be immense; 

that is not to say that this is impossible, rather a challenging feat. However, the results on this 

scale prove that this method is a reasonable substitution for the current implementation of 

template generation and proves to be more accurate, more consistent, and more efficient.  

 The issue of finding a way to implement weighted sub-search values into a search will 

most likely be accomplished through a new algorithm. An algorithm called C5.0 or the 

“improved C4.5” was an improvement upon the existing C4.5, as R. Pandya and J. Pandya 

(2015) stated, “C5.0 gives more accurate and efficient result”. Not only this, but it has a few 
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other improvements to C4.5. C5.0 is faster than C4.5, uses less memory, creates more condensed 

decision trees with improved accuracy, adds support for boosting, allows class weighting, and 

provides advanced winnowing (Johnson & Kuhn, 2013). Overall the improvements provided by 

C5.0 seem like a well-fitted algorithm for this purpose; however, the only issue with this is that it 

is not currently supported by WEKA. What this means for the impact on the project is that the 

existing methods and queries would have to be re-written for another open-source data mining 

suite that does support C5.0, of which there are few. Obviously a transition of this scale would 

require a complete overhaul, which is reasonable considering the added benefits and 

functionality that would become available with this change. One of the notable options offering 

C5.0 as an available algorithm is the programming language “R”, this language would be an 

acceptable port, and probably would result in overall faster computations, as well as more user 

functionality. Obviously, this would be the next step moving forward, taking the current project 

and improving the functionality as a whole to better conform to any given situation. To conclude, 

data mining can play a role in improving almost any task that requires a prediction, or has some 

form of data. It was able to form a template from seemingly random data, and that template 

proved to lead to accurate and interesting results. 
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